100. An Integral of the Denjoy Type. III

By Yôto Kubota
Department of Mathematics, Ibaraki University
(Comm. by Kinjirô Kunugi, m.J.A., June 12, 1967)

1. Introduction. This paper is concerned with the approximately continuous Denjoy integral ($A D$-integral) defined by the author [3]. The section 2 is devoted to simplify the theory of the $A D$-integral. The essential point is to use Romanovski's lemma ([2], p. 543). This idea was introduced by S. Izumi [2] who developed the theory of general Denjoy integral very simply using the lemma. In section 3 , it will be proved that the $A D$ integral includes exactly the general Denjoy integral (D-integral) and the approximately continuous Perron integral ($A P$-integral) defined by J. C. Burkill [1].
2. The $\boldsymbol{A D}$-integral. We begin by defining the notion of $(A C G)$. A real valued function $f(x)$ defined on the closed interval $[a, b]$ is said to be $(A C G)$ on the interval if $[a, b]$ is the sum of a countable number of closed sets on each of which $f(x)$ is absolutely continuous. Before introducing the $A D$-integral we need some preparations.

Lemma 1. If a non-void closed set E is the sum of a countable number of closed sets E_{k}, then there exists an interval (l, m) containing points of E and an integer k such that $(l, m) \cdot E \subset E_{k}$.

For the proof, see, for example, [5], p. 143.
Lemma 2 (Romanovski). Let \boldsymbol{F} be a system of open intervals in $I_{0}=(a, b)$ such that
(i) if $I_{k} \in \boldsymbol{F} \quad(k=1,2, \cdots, n)$ and $\left(\bigcup_{k=1}^{n} \bar{I}_{k}\right)^{\circ}=I$ is an open interval then $I \in \boldsymbol{F}$.
(ii) $I \in \boldsymbol{F}$ and $I^{\prime} \subset I$ imply $I^{\prime} \in \boldsymbol{F}$.
(iii) if $\bar{I}^{\prime} \subset I$ implies $I^{\prime} \in \boldsymbol{F}$, then $I \in \boldsymbol{F}$.
(iv) if \boldsymbol{F}_{1} is a subsystem of \boldsymbol{F} such that \boldsymbol{F}_{1} does not cover I_{0}, then there is an $I \in \boldsymbol{F}$ such that \boldsymbol{F}_{1} does not cover I.

Then $I_{0} \in \boldsymbol{F}$.
Lemma 3. If $f(x)$ is absolutely continuous on $[a, b]$ and if $f^{\prime}(x)=0$ a.e. then $f(x)$ is constant on $[a, b]$.

Theorem 1. If $f(x)$ is approximately continuous, $(A C G)$ on $[a, b]$ and if $A D f(x)=0$ a.e. then $f(x)$ is constant on $[a, b]$.

Proof. Let \boldsymbol{F} be a system of all open intervals of (a, b) in which f is constant. \boldsymbol{F} satisfies evidently the conditions (i), (ii),

