94. On Integers Expressible as a Sum of Two Powers. II

By Palahenedi Hewage Diananda
Department of Mathematics, University of Singapore, Singapore

(Comm. by Zyoiti Suetuna, m.J.A., June 12, 1967)

1. In a recent paper [2] we proved the following results:

Theorem 1. There is n_{0} such that for every $n \geqq n_{0}$ there are positive integers x and y satisfying

$$
n<x^{h}+y^{h}<n+c n^{a},
$$

where h is any integer $\geqq 2$,

$$
a=\left(1-\frac{1}{h}\right)^{2} \quad \text { and } \quad c=h^{2-(1 / h)}
$$

Theorem 2. For any $\varepsilon>0$, there is $n_{0}=n_{0}(\varepsilon)$ such that for every $n \geqq n_{0}$ there are positive integers x and y satisfying

$$
n<x^{f}+y^{h}<n+(c+\varepsilon) n^{a},
$$

where f and h are any integers $\geqq 2$,

$$
a=\left(1-\frac{1}{f}\right)\left(1-\frac{1}{h}\right) \quad \text { and } \quad c=h f^{1-(1 / h)} .
$$

The case $h=2$ of Theorem 1 and the case $f=h>2$ of Theorem 2 are due to Uchiyama [3], while the case $f=h=2$ of Theorem 2 is due to Bambah and Chowla [1].

As pointed out in Remark 4 of [2] we can replace c, in Theorem 2, by $C=f h^{1-(1 / \rho)}$; but the theorem with c is the better result if $f>h$.

In this note we obtain the following refinement of Theorem 2 and generalization of Theorem 1:

Theorem 3. There is n_{0} such that for every $n \geqq n_{0}$ there are positive integers x and y satisfying

$$
n<x^{f}+y^{h}<n+c n^{a},
$$

where f and h are any integers such that $f \geqq h \geqq 2$,

$$
a=\left(1-\frac{1}{f}\right)\left(1-\frac{1}{h}\right) \quad \text { and } \quad c=h f^{1-(1 / h)}
$$

This follows from the case $h=2$ of Theorem 1 and
Lemma 1. Theorem 3 is true for $f>2$.
The proof of this lemma has similarities with, but is more complicated than, the proofs of Theorems 1 and 2 and their special cases in [1], [2], and [3].
2. Proof of Lemma 1. We write [t] for the greatest integer $\leqq t$.

