92. On the Jacobian Varieties of Davenport-Hasse Curves

By Toshihiko Yamada
Department of Mathematics, Osaka University
(Comm. by Kenjiro Shoda, m.J.A., June 12, 1967)

Let p be any prime number, and consider the Davenport-Hasse curves C_{a} defined by the equations

$$
\begin{equation*}
y^{p}-y=x^{p^{\alpha-1}} \quad(a=1,2,3, \cdots) \tag{1}
\end{equation*}
$$

over the prime field $G F(p)$. If we denote by θ a primitive ($p^{a}-1$) ($p-1$)-th root of unity in the algebraic closure of $G F(p)$, the map (2) $\sigma:(x, y) \rightarrow\left(\theta x, \theta^{p^{\alpha-1}} y\right)$
defines an automorphism of C_{a}, which generates a cyclic group G of order $\left(p^{a}-1\right)(p-1)$. In this note we shall investigate the following problems:

1. To determine the l-adic representation of the automorphism group G (Theorem 1).
2. The decomposition of the jacobian variety J_{a} of C_{a} into simple factors (Theorem 2,3).
3. To give explicitly generators of endomorphism algebra (Theorem 5).

Detailed proofs and other aspects of Davenport-Hasse curves will be published elsewhere.

The author thanks to Professor Morikawa for his kind encouragement.

1. If we put $z=y^{p-1}$, the curve C_{a} is birationally equivalent to a curve defined by the equation

$$
\begin{equation*}
x^{\left(p^{a}-1\right)(p-1)}=z(z-1)^{p-1} . \tag{3}
\end{equation*}
$$

The previous automorphism σ is given in this case by
(2$)^{\prime} \quad \sigma:(z, x) \rightarrow(z, \theta x)$.
Now the following lemma is easily proved.
Lemma 1. The smallest natural number f such that $p^{f} \equiv 1 \bmod$. $\left(p^{a}-1\right)(p-1)$ is equal to $a(p-1)$.

Owing to this lemma, θ belongs to the field $k=G F\left(p^{a(p-1)}\right)$. So the algebraic function field $k(z, x)$ defined by the equation (3) is a Kummer extension over $k(z)$ of degree $\left(p^{a}-1\right)(p-1)$, whose Galois group G is generated by σ. We denote by $\mathfrak{p}_{0}, \mathfrak{p}_{1}$, the prime divisors of $k(z)$ which are the numerators of principal divisors $(z),(z-1)$ respectively, and by \mathfrak{p}_{∞}, the denominator of (z). Then on account of the equation (3), every prime divisor of $k(z)$ other than $\mathfrak{p}_{0}, \mathfrak{p}_{1}, \mathfrak{p}_{\infty}$ is not ramified in $k(z, x)$. We shall make the table of behavior of

