142. Eigenfunction Expansions Associated with the Schrödinger Operator with a Complex Potential and the Scattering Inverse Problem

By Kiyoshi Mochizuki

Mathematical Institute, Yoshida College, Kyoto University (Comm. by Kinjirô KUNUGI, M.J.A., Sept, 12, 1967)

1. Introduction. In this note¹⁾ we are concerned with the Schrödinger operator $-\varDelta + q(x)$ acting in the Hilbert space $\mathfrak{D} = L^2(E_3)$, where E_3 denotes the 3-dimensional Euclidean space. We consider the case where q(x) is a complex-valued potential function assumed to satisfy the following conditions:

(A) $q(x) \in L^2(E_3)$, is locally Hölder continuous except for a finite number of singularities and behaves like $O(|x|^{-2-\delta})(\delta > 0)$ as $|x| \to \infty$.

The eigenfunction expansion theorem associated with $-\Delta + q(x)$ was already proved, based on a work of Povzner [7], by Ikebe [1] under the same assumptions on q(x) when it is real-valued. Our purpose is to extend his results to the case of complex-valued potentials. We use the methods developed by J. Schwartz [8], Kato [3], and Kuroda [4], [5], and follow almost the same line of the proof given by Ikebe. In our case, however, the existence of a uniformly bounded spectral resolution E(e) of $-\Delta + q(x)$ is not proved if we choose real intervals e arbitrarily. So our results on the expansion problem will become rather of a local character.

The expansion formula can be applied to solve the scattering inverse problem formulated by Faddeev in [2]. His result is the following: A real-valued potential function q(x) can be determined uniquely, under the assumptions that $q(x) \in C^{1}(E_{3})$ and

(A₁) $q(x) = O(|x|^{-3-\delta})(\delta > 0)$ as $|x| \to \infty$, from the assymptotic conditions for $|k| \to \infty$ of the function $\theta_{\pm}(n, \nu; |k|)$ having a physical meaning.²⁾ We shall extend this result also to the case of complex-valued potential assumed to satisfy (A₁) in addition to (A). In our proof it is not necessary to assume $q(x) \in C^{1}(E_{3})$.

2. Spectral resolutions. We consider $-\varDelta + q(x)$ to be defined on $C_0^{\infty}(E_3)$. We denote by L_0 the selfadjoint extension of $-\varDelta$ with

¹⁾ The detailed proof of the following results will be given in a forthcoming paper.

²⁾ $|\theta_{-}|^2$ gives the so-called differential closs section of scattering for the particle incident in the direction ν and scattered in the direction n. For the definition of $\theta_{\pm}(n,\nu; |k|)$ see (25) in §4.