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1. Introduction. The main purpose of this paper is to give
the affirmative answer to an open problem raised by A. Arhangel’skii
in his recent communication to K. Morita whether the image Y
under a perfect mapping f of a paracompact normal M-space X is
an M-space or not.” A closed continuous mapping f of a topological
space X onto a topological space Y is said to be perfect if the inverse
images under f of points y of Y are compact subspaces of X. We
shall prove the following main theorem.

Theorem 1.1. Let f be a closed continuous mapping of an
M-space X onto a normal space Y, where X is T,. If f~(y) ts
countably compact for anmy point y of Y, then Y s also an M-space.

As a direct consequence of Theorem 1.1 we obtain the following

Cororally 1.2. Let f be a closed continuous mapping of a
normal M-space X onto a topological space Y, where X 1s T,. If
f(y) ts countably compact for any point y of Y, then Y is also
a normal M-space.

Some applications and a generalization of our main theorem will
be mentioned in §4.

2. Lemmas. Lemma 2.1. Let T be a metric space. ILf {F.}
1s a sequeuce of locally finite closed coverings of T such that {§.}
satisfies the condition (x) and that F,., is a refinement of F, for
every n, then there exists a sequence {U,, |n=1,2,---;m=1,2 ...}
of locally finite open coverings of T such that

(1) {U,,} satisfies the condition (x),

(2) F,,cU,. for 2€4,; n=1,2, <., m=1,2, -+,
where F,={F,, | 2e4,} and N, ={U,n.| A€ 4,}.

Proof. For any F,, of ., let us put

Vi ={2 | d(z, F,)<1/m},
where d is a metric function in T and m is an arbitrary positive
integer. Clearly F,,CV,.,. Let us put further
Qgwm:{‘/nml ] i€ An}'
Then we can prove that {%,,} satisfies the condition (x). Indeed,
let & ={K;|1=1,2, ---} be a family of subsets of T which has the
finite intersection property and contains as a member a subset of

1) Prof. K. Morita has kindly informed me of this open problem.



