162. On Mappings of Type l^{l}

By Masatoshi NAKAMURA (Comm. by Kinjirô Kunugi, M.J.A., Oct. 12, 1967)

In this note, we shall improve a result in A. Pietsch [1], and we shall consider the problem 8.4.4 mentioned in [1]. We mainly follow notations in [1].

Let E and F be normed spaces. Let $\mathcal{L}(E, F)$ be all continuous linear mapping of E into F, let $\mathcal{A}(E, F)$ be all mappings $t \in \mathcal{L}(E, F)$ such that t(E) is finite dimensional subspace of F, and let $\mathcal{A}_r(E, F)$ be all mappings $t \in \mathcal{L}(E, F)$ such that t(E) is at most r-dimensional subspace of F.

The norm $|| \quad ||$ of t in $\mathcal{L}(E, F)$ is defined by $||t|| = \sup \{||t(x)||; ||x|| \le 1, x \in E\}$ and the r-th approximation number of t in $\mathcal{L}(E, F)$ is defined by

$$\alpha_r(t) = \inf \{ || t - u ||; u \in \mathcal{A}_r(E, F) \}.$$

By $l^p(E, F)$ we denote all $t \in \mathcal{L}(E, F)$ such that $\sum_{r=0}^{\infty} \alpha_r(t)^p < \infty$ holds for all positive number p, and we put

$$\rho_p(t) = \left\{ \sum_{r=0}^{\infty} \alpha_r(t)^p \right\}^{1/p}$$

Lemma. Each mapping $t \in \mathcal{A}(E, F)$ can be represented in following form

$$t(x) = \sum_{i=1}^{r} \lambda_i < x, a_i > y_i, |\lambda_i| \le ||t||$$
 for $i = 1, 2, \dots, r,$

where $a_i \in U^0$, $y_i \in V$, and λ_i are real or complex numbers.

Proof of this lemma is found in ([1], p. 121).

Proposition. Each mapping $t \in l^p(E, F)$ (where p is any positive number) can be represented in following form, for any positive number δ ,

$$t(x) = \sum_{r=0}^{\infty} \lambda_r < x, \ a_r > y_r$$

and

$$\left\{\sum_{r=0}^{\infty} |\lambda_r|^p\right\}^{1/p} \leq 2^{1+3/p} (1+\delta) \rho_p(t),$$

where $a_r \in U^0$, $y_r \in V$, and λ_r are real or complex numbers.

Proof. By definition of $\alpha_r(t)$, for all natural number *n*, there exist u_n in $\mathcal{A}_{2^n-2}(E, F)$ such that $||t-u_n|| \leq (1+\delta)\alpha_{2^n-2}(t)$.

Let $v_n = u_{n+1} - u_n$ then we have $d_n \equiv \text{dimensional}$ of $v_n(E) \leq 2^{n+2}$ and

$$||v_{n}|| \leq ||t-u_{n}|| + ||t-u_{n+1}|| \leq 2(1+\delta)\alpha_{2^{n}-2}(t).$$