158. An Algebraic Formulation of K-N Propositional Calculus. III ## By Shôtarô TANAKA (Comm. by Kinjirô Kunugi, M.J.A., Oct. 12, 1967) In his paper [1], K. Iséki defined the KN-algebra. For the details of the KN-algebra, see [1]. The conditions of the KN-algebra are as follows: - 1) $\sim (p*p)*p=0$. - 2) $\sim p*(q*p)=0$. - 3) $\sim \sim (\sim \sim (p*r)*\sim (r*q))*\sim (\sim q*p)=0.$ - 4) Let α , β be expressions in this system, then $\alpha = 0$ and $\sim \sim \beta * \sim \alpha = 0$ imply $\beta = 0$. For the details of *K-N* propositional calculus, see $\lceil 2 \rceil \lceil 4 \rceil$. In my paper [5], having shown that the KN-algebra is characterized by 1), 3), 4), and $p*(\sim p*q)=0$, I do not prove that $p*(\sim p*q)=0$ holds in the KN-algebra. In this paper, we shall show that the KN-algebra implies the following theses: - 2') $p*(\sim p*q)=0$, - 2'') $p*(q*\sim p)=0$. - In 3), put $p=\beta$, $q=\alpha$, $r=\gamma$, then by 4), we have - A) $\sim \alpha * \beta = 0$ implies $\sim \sim (\beta * \gamma) * \sim (\gamma * \alpha) = 0$. Then we have the following: - B) $\sim \alpha * \beta = 0$, $\gamma * \alpha = 0$ imply $\beta * \gamma = 0$. - In B), put $\alpha = p * p$, $\beta = p$, $\gamma = \sim p$, then by 1) and 2) we have - 5) $p*\sim p=0$. - In A), put $\alpha = p$, $\beta = q * p$, $\gamma = r$, then by 2) we have - 6) $\sim \sim ((q*p)*r)*\sim (r*p)=0$. On the other hand, the KN-algebra contains the following (For the details, see $\lceil 1 \rceil$). - 7) $\sim p * p = 0$. - In 3), put $p=\alpha$, $q=\alpha$, $r=\beta$, then by 7) we have - 8) $\sim \sim (\alpha * \beta) * \sim (\beta * \alpha) = 0$, i.e., $\beta * \alpha = 0$ implies $\alpha * \beta = 0$. - In 6), put $p = \sim p$, r = p, then by 5) we have - 9) $(q*\sim p)*p=0$. - In 8), put $\beta = q * \sim p$, $\alpha = p$, then by 9) we have - 10) $p*(q*\sim p)=0$. We shall use the following thesis which has been obtained in his paper [1].