158. An Algebraic Formulation of $K-N$ Propositional Calculus. III

By Shôtarô Tanaka
(Comm. by Kinjirô Kunugi, m.J.A., Oct. 12, 1967)
In his paper [1], K. Iséki defined the KN-algebra. For the details of the $K N$-algebra, see [1]. The conditions of the $K N$ algebra are as follows:

1) $\sim(p * p) * p=0$.
2) $\sim p *(q * p)=0$.
3) $\sim \sim(\sim \sim(p * r) * \sim(r * q)) * \sim(\sim q * p)=0$.
4) Let α, β be expressions in this system, then $\alpha=0$ and $\sim \sim \beta * \sim \alpha=0$ imply $\beta=0$. For the details of $K-N$ propositional calculus, see [2]-[4].

In my paper [5], having shown that the KN-algebra is characterized by 1), 3), 4), and $p *(\sim p * q)=0$, I do not prove that $p *(\sim p * q)$ $=0$ holds in the $K N$-algebra.

In this paper, we shall show that the $K N$-algebra implies the following theses:
$\left.2^{\prime}\right) \quad p *(\sim p * q)=0$,
$\left.2^{\prime \prime}\right) \quad p *(q * \sim p)=0$.
In 3), put $p=\beta, q=\alpha, r=\gamma$, then by 4), we have
A) $\sim \alpha * \beta=0$ implies $\sim \sim(\beta * \gamma) * \sim(\gamma * \alpha)=0$. Then we have the following:
B) $\sim \alpha * \beta=0, \gamma * \alpha=0$ imply $\beta * \gamma=0$.

In B), put $\alpha=p * p, \beta=p, \gamma=\sim p$, then by 1) and 2) we have
5) $p * \sim p=0$.

In A), put $\alpha=p, \beta=q * p, \gamma=r$, then by 2) we have
6) $\sim \sim((q * p) * r) * \sim(r * p)=0$.

On the other hand, the $K N$-algebra contains the following (For the details, see [1]).
7) $\sim p * p=0$.

In 3), put $p=\alpha, q=\alpha, r=\beta$, then by 7) we have
8) $\sim \sim(\alpha * \beta) * \sim(\beta * \alpha)=0$, i.e., $\beta * \alpha=0$ implies $\alpha * \beta=0$.

In 6), put $p=\sim p, r=p$, then by 5) we have
9) $(q * \sim p) * p=0$.

In 8), put $\beta=q * \sim p, \alpha=p$, then by 9) we have
10) $p *(q * \sim p)=0$.

We shall use the following thesis which has been obtained in his paper [1].

