158. An Algebraic Formulation of K-N Propositional Calculus. III

By Shôtarô TANAKA

(Comm. by Kinjirô Kunugi, M.J.A., Oct. 12, 1967)

In his paper [1], K. Iséki defined the KN-algebra. For the details of the KN-algebra, see [1]. The conditions of the KN-algebra are as follows:

- 1) $\sim (p*p)*p=0$.
- 2) $\sim p*(q*p)=0$.
- 3) $\sim \sim (\sim \sim (p*r)*\sim (r*q))*\sim (\sim q*p)=0.$
- 4) Let α , β be expressions in this system, then $\alpha = 0$ and $\sim \sim \beta * \sim \alpha = 0$ imply $\beta = 0$. For the details of *K-N* propositional calculus, see $\lceil 2 \rceil \lceil 4 \rceil$.

In my paper [5], having shown that the KN-algebra is characterized by 1), 3), 4), and $p*(\sim p*q)=0$, I do not prove that $p*(\sim p*q)=0$ holds in the KN-algebra.

In this paper, we shall show that the KN-algebra implies the following theses:

- 2') $p*(\sim p*q)=0$,
- 2'') $p*(q*\sim p)=0$.
- In 3), put $p=\beta$, $q=\alpha$, $r=\gamma$, then by 4), we have
- A) $\sim \alpha * \beta = 0$ implies $\sim \sim (\beta * \gamma) * \sim (\gamma * \alpha) = 0$. Then we have the following:
 - B) $\sim \alpha * \beta = 0$, $\gamma * \alpha = 0$ imply $\beta * \gamma = 0$.
 - In B), put $\alpha = p * p$, $\beta = p$, $\gamma = \sim p$, then by 1) and 2) we have
 - 5) $p*\sim p=0$.
 - In A), put $\alpha = p$, $\beta = q * p$, $\gamma = r$, then by 2) we have
 - 6) $\sim \sim ((q*p)*r)*\sim (r*p)=0$.

On the other hand, the KN-algebra contains the following (For the details, see $\lceil 1 \rceil$).

- 7) $\sim p * p = 0$.
- In 3), put $p=\alpha$, $q=\alpha$, $r=\beta$, then by 7) we have
- 8) $\sim \sim (\alpha * \beta) * \sim (\beta * \alpha) = 0$, i.e., $\beta * \alpha = 0$ implies $\alpha * \beta = 0$.
- In 6), put $p = \sim p$, r = p, then by 5) we have
- 9) $(q*\sim p)*p=0$.
- In 8), put $\beta = q * \sim p$, $\alpha = p$, then by 9) we have
- 10) $p*(q*\sim p)=0$.

We shall use the following thesis which has been obtained in his paper [1].