183. An Important Relation in Homotopy Groups of Spheres

By Hirosi Toda
Department of Mathematics, Kyoto University, Kyoto

(Comm. by Zyoiti Suetuna, m.J.a., Nov. 13, 1967)

1. In computing the p-primary component ${ }_{p} G_{k}$ of the k-stem group $G_{k}=\lim \pi_{n+k}\left(S^{n}\right), p$ denoting always an odd prime, an essential difficulty lies in the case $k=2 p^{2}(p-1)-3$. Recently, Cohen [1] has announced that ${ }_{p} G_{2 p^{2}(p-1)-3} \approx Z_{p}$, which is equivalent to say that $\alpha_{1} \beta_{1}^{p} \neq 0$ for the generators α_{1} of ${ }_{p} G_{2 p-3}$ and β_{1} of ${ }_{p} G_{2 p(p-1)-2}$. The result of the present work, however, does not agree with this announcement. Our fundamental result is

Theorem. For sufficiently large integer n, there exists a cell complex

$$
K=S^{n} \cup e^{n+2\left(p^{2}-1\right)(p-1)-1} \cup e^{n+2 p^{2}(p-1)-1} \cup e^{n+2 p^{2}(p-1)}
$$

such that $\mathfrak{S}_{p^{p}} H^{n}\left(K ; Z_{p}\right) \neq 0, \Delta \mathfrak{P}^{1} H^{n+2\left(p^{2}-1\right)(p-1)-1}\left(K ; Z_{p}\right) \neq 0$ and the cell $e^{n+2\left(p^{2}-1\right)(p-1)-1}$ is attached to S^{n} by a representative of β_{1}^{n}.

It follows immediately the following
Corollary. $\quad \alpha_{1} \beta_{1}^{p}=0$.
This shows that, in the Adams' spectral sequence computed by May [2], the differential cancells $h_{0} b^{p}$ with b_{1}, or equivalently, the element γ of ${ }_{p} G_{2 p^{2}(p-1)-2}$ does not exist and should be cancelled with $\alpha_{1} \beta_{1}^{p}$. Then the corrected results for ${ }_{p} G_{k}$ are stated as follows:

Proposition 1. For $k<2\left(p^{2}+2 p\right)(p-1)-4,{ }_{p} G_{k}$ is the direct sum of cyclic groups generated by the following elements of corresponding degree k :

$$
\begin{aligned}
& \alpha_{i}\left(1 \leq i<p^{2}+2 p, i \not \equiv 0(\bmod p)\right), \quad \alpha_{j p}^{\prime}(1 \leq j<p+2, j \not \equiv 0(\bmod p)), \\
& \alpha_{p^{\prime}}^{\prime \prime}, \beta_{1}^{r}(1 \leq r<p+3), \quad \alpha_{1} \beta_{1}^{r}(1 \leq r<p), \\
& \beta_{1}^{r} \beta_{s}, \alpha_{1} \beta_{1}^{r} \beta_{s}(0 \leq r, 2 \leq s<p, r+s<p+2), \quad \beta_{2} \beta_{p-1}, \alpha_{1} \beta_{2} \beta_{p-1}, \\
& \varepsilon_{i}(1 \leq i<p), \alpha_{1} \varepsilon_{i}(1 \leq i<p-2), \varepsilon^{\prime}, \beta_{1} \varepsilon^{\prime}, \varphi,
\end{aligned}
$$

where $\operatorname{deg}\left(\alpha_{i}\right)=2 i(p-1)-1, \operatorname{deg}\left(\alpha_{j p}^{\prime}\right)=2 j p(p-1)-1, \operatorname{deg}\left(\alpha_{p^{2}}^{\prime \prime}\right)=2 p^{2}(p-1)$ $-1, \operatorname{deg}\left(\beta_{s}\right)=2(s p+s-1)(p-1)-2, \operatorname{deg}\left(\varepsilon_{i}\right)=2\left(p^{2}+i\right)(p-1)-2, \operatorname{deg}\left(\varepsilon^{\prime}\right)$ $=2\left(p^{2}+1\right)(p-1)-3, \operatorname{deg}(\varphi)=2\left(p^{2}+p\right)(p-1)-3$. The orders of $\alpha_{j p}^{\prime}, \alpha_{p^{2}}^{\prime \prime}$ and φ are p^{2}, p^{3}, and p^{2} respectively, and the other generators are of order p. We mention that ε^{\prime} corresponds to $\alpha_{1} \gamma$ in [2], $\alpha_{1} \varepsilon_{i}$ to $\alpha_{i+1} \gamma$, and $\beta_{1} \varepsilon^{\prime}$ to $\alpha_{1} \beta_{1} \gamma$. The following representations of new generators are given:

$$
\begin{array}{rlrl}
\varepsilon^{\prime} & =\left\{\beta_{1}^{p}, \alpha_{1}, \alpha_{1}\right\}, & \varepsilon_{1}=\left\{\alpha_{1}, \beta_{1}^{p}, p \iota, \alpha_{1}\right\}, \\
\varepsilon_{i+1} & =\left\{\varepsilon_{i}, p \iota, \alpha_{1}\right\}, & & 1 \leq i<p-1, \quad \varphi \in\left\{\varepsilon_{p-2}, \alpha_{1}, \alpha_{1}\right\} .
\end{array}
$$

