207. On Compactness in Ranked Spaces

By Yukio SAKAMOTO,^{*)} Hidetake NAGASHIMA,^{**)} and Kin'ichi YAJIMA^{***)}

(Comm. by Kinjirô KUNUGI, M.J.A., Dec. 12, 1967)

In this paper we will give a definition of compactness in the ranked space [1] and will prove some properties in respect of its compactness. We have used the same terminology as that introduced in the paper "On an Equivalence of Convergences in Ranked spaces" [3].

We say that the ranked space R satisfies the axiom (T_2) of separation, if and only if for any distinct points p and q of Rthere exist disjoint neighborhoods of p and of q respectively having certain ranks.

We say that the ranked space R satisfies the condition (M), if and only if for all points p of R the following condition is satisfied;

(M) if $V(p) \in \mathfrak{B}_{\alpha}$, $U(p) \in \mathfrak{B}_{\beta}$, and $\alpha \leq \beta$ then $V(p) \supseteq U(p)$. Definition. A subset A of the ranked space R is sequentially

Definition. A subset A of the ranked space R is sequentially compact if and only if every sequence of A has a subsequence which is R-convergent to a point of A.

Proposition 1. Let R be the ranked space satisfying the axiom (T_2) of separation and the condition (M). If a sequence $\{p_{\alpha}\}$ of R is R-convergent, then $\{\lim p_{\alpha}\}$ consists of only a point.

Proof. Suppose $p, q \in \{\lim_{\alpha} p_{\alpha}\}$ and $p \neq q$. Since $p, q \in \{\lim_{\alpha} p_{\alpha}\}$, there exist a fundamental sequence $\{V_{\alpha}(p)\}$ of neighborhoods of p such that $p_{\alpha} \in V_{\alpha}(p)$ and a fundamental sequence $\{U_{\alpha}(q)\}$ of neighborhoods of q such that $p_{\alpha} \in U_{\alpha}(q)$. Hence, for all α $p_{\alpha} \in V_{\alpha}(p) \cap U_{\alpha}(q)$. (1)

 $p_{\alpha} \in V_{\alpha}(p) \cap U_{\alpha}(q).$ (1) Since R satisfies the axiom (T_{2}) , there exist a neighborhood V(p) of p and a neighborhood U(q) of q such that $V(p) \in \mathfrak{B}_{7}$, $U(q) \in \mathfrak{B}_{\delta}$, and $V(p) \cap U(q) = \phi$.

By the condition (M), there exist $V_{\alpha_0}(p)$ and $U_{\alpha_0}(q)$ which are elements of $\{V_{\alpha}(p)\}$ and $\{U_{\alpha}(q)\}$ such that $V(p) \supseteq V_{\alpha_0}(p)$ and $U(q) \supseteq U_{\alpha_0}(q)$. Therefore, by (1) $p_{\alpha_0} \in V_{\alpha_0}(p) \cap U_{\alpha_0}(q) \subseteq V(p) \cap U(q)$, that is, $V(p) \cap U(q) \neq \phi$. This contradiction demonstrates that $\{\lim p_{\alpha}\}$ consists of only a point.

Proposition 2. Let R be the ranked space satisfying the

^{*)} Japan Women's University.

^{**)} Hokkaido University of Education.

^{***)} Japanese National Railways.