On Criterion for the Nuclearity of Space $S\{M_n\}$ 16.

By Shunsuke Funakosi

(Comm. by Kinjirô Kunugi, M. J. A., Feb. 12, 1968)

In his paper [2], T. Yamanaka introduced a new type of function spaces $S\{M_n\}$ which includes $K\{M_n\}$ as well as all S-type spaces. In this note, we shall consider a criterion for the nuclearity of the space $S\{M_n\}$. The fundamental idea of its proof is essentially due to $\lceil 1 \rceil$, $\lceil 3 \rceil$. For nuclear spaces and its related notion, see $\lceil 1 \rceil$.

Let $M_{\nu}(x, q)(p=1, 2, \cdots)$ be functions defined for all $x \in R_{\nu}$ (n-dimensional Euclidean space) and all systems of n non-negative integers $q = (q_1, q_2, \dots, q_n)$ which satisfy the following three conditions.

- $(1) \quad 0 \leq M_1(x, q) \leq M_2(x, q) \leq \cdots \leq M_p(x, q) \leq \cdots$
- (2) For every p there exists a positive number N_p which may be infinite, such that $\lim N_p = \infty$ and $\inf M_p(x,q) > 0$ for $|q| < N_p$ and $M_p(x,q)=0$ for $|q| \geq N_p$.
 - (3) For any fixed pair (x, q) there are only two possible cases; $M_{v}(x, q) = \infty$ for all p or $M_{v}(x, q) < \infty$ for all p.

Given such a system of functions $M_{\nu}(x,q)$, we denote by $S\{M_{\nu}\}$ the set of all infinitely differentiable functions $\varphi(x)$ for which the countable norms are finite, i.e.

$$||\varphi||_p = \sup_{x,q} M_p(x,q) |D^q \varphi(x)| < \infty.$$
 Proposition 1. The space $S\{M_p\}$ is complete.

Proof of this proposition is found in ($\lceil 2 \rceil$ or $\lceil 3 \rceil$).

We will say that a space $S\{M_n\}$ satisfies condition (N_1) , if the following conditions hold.

(1) For any p there is $p' \ge p$ such that the ratio

$$m_{pp'}(x) = \sup_{q} rac{M_p(x, q)}{M_{p'}(x, q)} \qquad \Big(rac{0}{0} = rac{\infty}{\infty} = 0\Big).$$

goes to zero as $|x| \to \infty$ and $m_{pp'}(x)$ is a summable function of x.

(2) If there exists q such that $M_{\nu}(x,q) \neq 0, \neq \infty$ for every $x \in R_n$, then we can obtain the following inequality:

 $M_p(x,q) \le K_{pp'}M_{p'}(y,q+\alpha)$ for $|y-x| \le 1$ and $|\alpha| \le n$, where $K_{pp'}$ is a suitable constant number and n is a arbitrary positive integer. The following Lemma is due to [3]:

Lemma. Let $\varphi(x)$ be a n-ordered continuous differentiable function on B(x; r), then we can obtain the following inequality $\mid \varphi(x) \mid \leq A_r \sum_{\mid \beta \mid \leq n} \int_{\mid y-x \mid \leq r} \mid D^{\beta} \varphi(y) \mid dy$, where A_r is a suitable constant

¹⁾ B(x; r) denotes the closed ball with center x and radius r.