9. Ackermann's Model and Recursive Predicates

By Moto-o Takahashi
Mathematical Institute, Tokyo University of Education, Tokyo
(Comm. by Zyoiti Suetuna, m. J. A., Feb. 12, 1968)

Let N be the set of all non-negative integers. Define a binary predicate ϵ on N by

$$
a \in b . \equiv .\left[b / 2^{a}\right] \text { is odd, }
$$

where $[x]$ means the greatest integer contained in x. (For the recursive definition of $[x / y]$, see Kleene [1], p. 223). Then the structure $\langle N, \epsilon\rangle$, which is called Ackermann's model, satisfies all the axioms of $Z F$ except the axiom of infinity.

A predicate $P\left(a_{1}, \cdots, a_{n}\right)$ on N is called bounded, if there exists a restricted formula $A\left(x_{1}, \cdots, x_{n}\right)$ in the sence of [2] such that $P\left(a_{1}, \cdots, a_{n}\right)$ holds if and only if $A\left(a_{1}, \cdots, a_{n}\right)$ is true in $\langle N, \epsilon\rangle$. Then our main theorem can be stated as follows:

Theorem. A predicate $R\left(a_{1}, \cdots, a_{n}\right)$ is general recursive if and only if there exists bounded predicates $P\left(a, a_{1}, \cdots, a_{n}\right)$ and $Q\left(a, a_{1}, \cdots, a_{n}\right)$ such that

$$
\text { (1) } \quad R\left(a_{1}, \cdots, a_{n}\right) \equiv \exists x P\left(x, a_{1}, \cdots, a_{n}\right) \equiv \forall x Q\left(x, a_{1}, \cdots, a_{n}\right)
$$

for all $a_{1}, \cdots, a_{n} \in N$.
Proof. First suppose that there exist P and Q satisfying (1). Since ϵ is primitive recursive, we can easily show that every bounded predicate is primitive recursive. Hence, by the theorem $\mathrm{VI}(b)$ of [1], R is general recursive. Before proving the converse, we prove several lemmata. We temporarily call a predicate R for which there can be found bounded predicates P and Q satisfying (1) as a Δ predicate.

Lemma 1. $a<b$ is $a \Delta$-predicate.
Proof. Let $A(p, z)$. $\equiv . \operatorname{Comp}(z) \wedge p \subseteq z \times z \wedge \forall x \forall y(\langle x z\rangle \in p$ $\equiv x \in z \wedge y \in z \wedge \exists u(u \in y \wedge u \notin x \wedge \forall v(\langle u v\rangle \in p \supset(v \in x \equiv v \in y))))$, where $z \times z$ means direct product. Then $A(p, z)$ has the following properties:
$1^{\circ} A(p, z)$ is bounded.
2° If $A(p, z)$, then we have

$$
\forall i \forall j(\langle i j\rangle \in p \equiv i \in z \wedge j \in z \wedge i<j)
$$

$3^{\circ} \quad \forall a \forall b \exists p \exists z(a \in z \wedge b \in z \wedge A(p, z))$.
1° and 3° are easily proved. 2° is proved by the induction on $\max (i, j)$.Therefore

$$
a<b \equiv{ }_{\exists}^{\forall} p_{\exists}^{\forall} z\left(a \in z \wedge b \in z \wedge A(p, z)_{\wedge}\langle a b\rangle \in p\right) .
$$

This clearly shows $a<b$ is a Δ-predicate.
Lemma 2. $a^{\prime}=b$ is $a \Delta$-predicate.

