No. 3]

36. On an Analytic Index-formula for Elliptic Operators

By Daisuke FUJIWARA Department of Mathematics, University of Tokyo (Comm. by Kunihiko KODAIRA, M. J. A., March 12, 1968)

§1. Preliminaries. In his work [1], [3], M. F. Atiyah indicated an analytic formula for the index of elliptic differential operators on compact manifolds. The aim of this note is to describe this formula more explicitly.

Assume that both X and Y are differentiable vector bundles with fibre C^i over a compact oriented Riemannian manifold Mwithout boundary and that they are provided with hermitian metric in each fibre. Let P be an elliptic differential operator of order mfrom $\mathcal{C}(X)$ to $\mathcal{C}(Y)$, where $\mathcal{C}(X)$ is the space of C^{∞} sections of X provided with the usual topology. We denote by $L^2(X)$ the space of L^2 sections of X. Then, considered as a densely defined linear operator from $L^2(X)$ to $L^2(Y)$, P is closable. We denote its minimal closed extension by the same symbol P. Since P is a densely defined closed operator, there is its adjoint P^* which is a densely defined closed operator from $L^2(Y)$ to $L^2(X)$. It is well known that P has a finite index Ind (P).

§ 2. Results. Our first result is the following:

Theorem 1. Let λ be a positive number. Then we have the formula

(1) Ind $(P) = \lim_{\lambda \to \infty} \lambda [\operatorname{Trace} (\lambda + (P^*P)^k)^{-1} - \operatorname{Trace} (\lambda + (PP^*)^{k-1}])$

where k is an arbitrary integer which is larger than $\frac{n}{2m}$.

Proof. The following proof is a variant of the discussion used in M. F. Atiyah and R. Bott $\lceil 3 \rceil$.

Let $\Lambda = \{0, \lambda_1, \lambda_2, \cdots\}$ be the set of eigen values of PP^* or P^*P with $0 < \lambda_1 < \lambda_2 < \cdots$. Let $\Gamma_j(X)$ and $\Gamma_j(Y)$ be, respectively, the eigen-spaces of P^*P and PP^* corresponding to λ_j . It is well known that $\Gamma_j(X), \Gamma_j(Y)$ are of finite dimension. Let P_j denote the restriction of P to $\Gamma_j(X)$. Then we have the following complexes:

 $0 \longrightarrow \Gamma_j(X) \xrightarrow{P_j} \Gamma_j(Y) \longrightarrow 0, \qquad j = 0, 1, 2, 3, \cdots.$ Obviously,

Ind $(P) = \dim \Gamma_0(X) - \dim \Gamma_0(Y)$, $0 = \dim \ker P_j - \dim \operatorname{coker} P_j$, because $P^*P|_{\Gamma_j(X)} = \lambda_j$, $PP^*|_{\Gamma_j(Y)} = \lambda_j$. Hence