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1. Preliminaries. In his work 1, 3_, M. F. Atiyah
indicated an analytic formula for the index of elliptic differential
operators on compact manifolds. The aim of this note is to describe
this formula more explicitly.

Assume that both X and Y are differentiable vector bundles
with fibre C over a compact oriented Riemannian manifold M
without boundary and that they are provided with hermitian metric
in each fibre. Let P be an elliptic differential operator of order m
from ’(X) to (Y), where ’(X) is the space of C sections of X
provided with the usual topology. We denote by L(X) the space
of L sections of X. Then, considered as a densely defined linear
operator from L(X) to L(Y), P is closable. We denote its minimal
closed extension by the same symbol P. Since P is a densely defined
closed operator, there is its adjoint P* which is a densely defined
closed operator from L(Y) to L(X). It is well known that P has
a finite index Ind (P).. 2. Results. Our first result is the following:

Theorem 1. Let 2 be a positive number. Then we have the
formula
1 Ind (P) lim 2Trace (2 + (P*P))-- Trace (2 + (PP*)-

where k is an arbitrary integer which is larger than n
2m

Proof. The following proof is a variant of the discussion used
in M. F. Atiyah and R. Bott 3.

Let A={0, 21, 2,...} be the set of eigen values of PP* or P*P
with 0<. .... Let F(X) and F(Y) be, respectively, the
eigen-spaces of P*P and PP* corresponding to 2.. It is well known
that F(X),F(Y) are of finite dimension. Let P. denote the
restriction of P to F(X). Then we have the following complexes:

0 [’(X) ::P F(Y) ,0, j-0, 1, 2, 3, ....
Obviously,

Ind (P) dim Uo(X)- dim Fo(Y),
0 dim ker P.-dim coker P,

because P*Plr.(x)=2, PP* [r.()-2’. Hence


