Note on the Nuclearity of Some Function Spaces. II 35.

By Masatoshi NAKAMURA

(Comm. by Kinjirô KUNUGI, M.J.A., March 12, 1968)

In this note, by the same method as $\lceil 3 \rceil$, we shall prove the nuclearity of $Z_{\rho}\{M_{A}\}$, which it is introduced by I. M. Gelfand and G. E. Shilov $\lceil 2 \rceil$.

Definition. Let A be any index set and we assume that, for each element α of A, $M_{\alpha}(z)$ is a real valued continuous function defined on a open subset Ω of the complex space C^n and it satisfies the following condition: for each $\alpha \in A$, $M_{\alpha}(z)$ is positive and

$$ext{if} \ lpha {\leq} eta \quad ext{then} \quad M_{\scriptscriptstylelpha}(z) {\leq} M_{\scriptscriptstyleeta}(z) \; .$$

 $||\psi||_{\alpha} = \sup_{z \in \Omega} M_{\alpha}(z) |\psi(z)|$ We put $(\alpha \in A)$ (1)

where ψ is a element of the set of all entire functions on Ω . Then we denote by $Z_{\rho}\{M_{A}\}$ the set of all the entire functions ψ which satisfies $||\psi||_{\alpha} < \infty$ for all $\alpha \in A$ and the topology of $Z_{\rho}\{M_{A}\}$ be defined by the sequence of norms $|| \psi ||_{\alpha} (\alpha \in A)$.

We shall prove below that $Z_{\rho}\{M_{A}\}$ is a nuclear space if the following two conditions are satisfied.

 (N_1^0) For any element α of A there exists an index $\beta \ge \alpha$ such that $rac{M_lpha(z)}{M_eta(z)}$ is integrable on arOmega and if arOmega is an unbounded open subset

then $\lim_{|z|\to\infty} \frac{M_{lpha}(z)}{M_{eta}(z)} = 0.$

 (N_2°) For any index $\alpha \in A$ there exists an index $\beta \ge \alpha$ such that, for some positive number γ , if $|w-z| \leq \gamma$ then

$$rac{M_{lpha}(z)}{M_{eta}(w)} {\leq} C_{lpha}$$
 (2)

where C_{α} is a constant number depending on α .

Lemma. If the condition (N_1^0) holds then the initial topology of the space $Z_{g}\{M_{A}\}$ is equivalent to the topology introduced by the sequence of semi-norms

$$||\psi||_{\alpha,K} = \sup_{z \in K} \{M_{\alpha}(z) |\psi(z)|\} \quad for \ \psi \in Z_{\rho}\{M_A\} ,$$
 (3)

where α be any index in A and K runs all compact subset of Ω . **Proof.** Clearly for any $\psi \in Z_0\{M_A\}$

$$|| alc || = \langle || alc ||$$

$$\|\psi\|_{\alpha,\kappa} \leq \|\psi\|_{\alpha} \tag{4}$$

for all $\alpha \in A$ and compact subset K of Ω .

Next, when Ω is unbounded, for each $\alpha \in A$ and $\psi \in Z_{\rho}\{M_{A}\}$ $\lim M_{\alpha}(z)\psi(z)=0.$

$$|z| \rightarrow \infty$$