29. Remarks on Countable Paracompactness

By C. E. AULL

Virginia Polytechnic Institute, Blacksburg, Virginia, U.S.A.

(Comm. by Kinjirô KUNUGI, M.J.A., March 12, 1968)

Introduction. This note consists of 2 parts. 1. An observation that every regular normal space is countably paracompact if and only if every T_4 space is countably paracompact. 2. It is proved that a generalized F_{σ} , α -countably paracompact subset is closed in a T_4 space. α -countably paracompact subsets were introduced in [2].

Dowker's problem. Dowker [5, 221] gave an example of a normal space that was not countably paracompact, and he raised the question as to the existence of T_4 spaces that were not countably paracompact. In that Dowker's example is T_0 and not T_1 , it is not regular. We use a result of M. H. Stone to prove the following theorem.

Theorem 1. Every normal regular topological space is countably paracompact if and only if every T_4 space is countably paracompact.

Proof. Let (X, \mathcal{T}) be a regular normal space. For $x \in X$, let $\langle x \rangle$ be the intersection of all open and closed sets containing [x] as a subset. We define equivalence classes on $X \times X$ by saying that $(x, y) \in R$ if and only if $\langle x \rangle = \langle y \rangle$. Then by Stone's theorem X/R with the quotient topology \mathcal{T}_R is a T_0 space and (X, \mathcal{T}) and $(X/R, \mathcal{T}_R)$ are lattice equivalent and one is normal (regular) then the other is normal (regular). So $(X/R, \mathcal{T}_R)$ is T_4 . Let $\{V_n\}$ be a countable open cover of (X, \mathcal{T}) . Let $\phi(V_n)$ be the image of V_n in $\{X/R, \mathcal{T}_R\}$. $\{\phi(V_n)\}$ is clearly a cover of X/R. Let $(X/R, \mathcal{T}_R)$ be countably paracompact, then $\{\phi(V_n)\}$ has a point finite countable open refinement $\{\phi(W_n)\}$. $\{W_n\}$ is a point finite open refinement of $\{V_n\}$ and (X, \mathcal{T}) is countably metacompact and by a theorem of Dowker [5, 220] is countably paracompact.

 α -countably paracompact subsets.

Definition 1. A subset M of a topological space (X, \mathcal{T}) is α countably paracompact if every countably \mathcal{T} -open cover $\{V_n\}$ has a \mathcal{T} -open refinement (covers X) which is locally finite with respect to all points of X.

In a previous paper [1], it was proved that, in topological spaces such that every point is the intersection of a countable number of