25. Cohomology Operations in Iterated Loop Spaces

By Goro NISHIDA

Department of Mathematics, Kyoto University, Kyoto (Comm. by Zyoiti SUETUNA, M. J. A., March 12, 1968)

1. Introduction. In [3], Dyer and Lashof have determined the mod p homology structure of iterated loop spaces by use of extended p-th power operations, where p always denotes a prime. This operation is a generalization of H-squaring (for p=2) defined by Araki-Kudo [2], and operates on mod p homology group of H_p^{∞} spaces X, especially iterated loop spaces. Let $Q_i^{(p)}: H_n(X; Z_p)$ $\rightarrow H_{np+i}(X; Z_p)$ be Dyer-Lashof's extended powers. For odd p, we denote operations $Q_{(p)}^j: H_n(X; Z_p) \rightarrow H_{n+2j(p-1)}(X; Z_p), j=0, 1, \cdots$, by $Q_{(p)}^j x = (-1)^{i+m(n^2+n)/2} (m!)^n Q_{(2j-n)(p-1)}^{(p)} x, x \in H_n(X; Z_p), m = (p-1)/2$, and for $p=2, Q_{(2)}^j: H_n(X; Z_p) \rightarrow H_{n+j}(X; Z_p)$ by $Q_{(2)}^j x = Q_{(2n)}^{(2n)} x$.

The operation $Q_{(p)}^{j}$ has the following properties: 1. $Q_{(p)}^{j}$ is a homomorphism; 2. For odd p, $Q_{(p)}^{i}x=0$ if deg x>2j and $Q_{(p)}^{j}x=x^{p}$ if deg x=2j, and for p=2, $Q_{(2)}^{i}x=0$ if deg x>j and $Q_{(2)}^{j}x=x^{2}$ if deg x=j; 3. $Q_{(p)}^{j}(x\cdot y)=\sum_{k+l=j}Q_{(p)}^{k}x\cdot Q_{(p)}^{l}y$; 4. $Q_{(p)}^{j}$ commutes with the suspension homomorphism σ associated with the fibering of the contractible total space, $\sigma Q_{(p)}^{j}=Q_{(p)}^{j}\sigma$.

Our purpose is to determine the relation between $Q_{(p)}^{j}$ and the Steenrod reduced power operations ρ^{n} (squaring operations Sq^{n} for p=2). To state the results, we denote by ρ_{*}^{n} the dual operation of ρ^{n} , i.e., defined by

 $\langle
ho_*^n x, y
angle = \langle x,
ho^n y
angle$ for $x \in H_*(X; Z_p), y \in H^*(X; Z_p)$.

Let $\begin{pmatrix} a \\ b \end{pmatrix}$ be the binomial coefficient with the following conven-

sions: $\binom{a}{b} = 0$ for a or b < 0 and $\binom{a}{b} = 1$ for $b = 0, a \ge 0$. \varDelta denotes

the homology Bockstein operation. Then we have

Main theorem. For odd p, $\rho_*^n Q_{(p)}^{n+s} = \sum (-1)^{n+i} {s(p-1) \choose i} Q_{(p)}^{s+i} \rho_*^i$,

$$egin{aligned} & & e^{n} \Delta Q^{n+s}_{(p)} = \sum_{i} (-1)^{n+i} {s(p-1)-1 \choose n-pi} \Delta Q^{s+i}_{(p)}
ho^{*}_{*} \ & + \sum_{i} (-1)^{n+i+1} {s(p-1)-1 \choose n-pi-1} Q^{s+i}_{(p)}
ho^{i}_{*} \Delta, \end{aligned}$$

and for p=2

$$Sq_*^nQ_{(2)}^{n+s} = \sum_i {s \choose n-2i} Q_{(2)}^{s+i}Sq_*^i.$$