52. On Generalized Integrals. II

By Shizu Nakanishi
University of Osaka Prefecture
(Comm. by Kinjirô Kunugi, M. J. A., April 12, 1968)

In the preceding paper [5], we proposed a question whether the set of ($E . R$.) integrable functions can be obtained as a completion of the set \mathcal{E} with respect to some reasonable topology and rank (\mathcal{E} stands for the set of step functions on $[a, b]$). The aim of a series of these papers is to give a positive answer to it. To do this, first of all in the Note I we introduced on \mathcal{E} a topology and a rank so that \mathcal{E} should become a ranked space. We proved that, when $u:\left\{V_{n}\left(f_{n}\right)\right\}$ is a fundamental sequence in $\mathcal{E}, f_{n}(x)$ converges to a finite function $f(x)$ a.e. and $\int_{a}^{b} f_{n}(x) d x$ converges to a finite limit, that is, every fundamental sequence u determines a function $J(u)=f(x)$ and a value $I(v)=\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}(x) d x$. Moreover, in this paper, we will establish that when we agree with two functions equal if they differ only in a set of measure zero, each maximal collection u^{*} in \mathcal{E} determines a function which we can associate to this u^{*}. We denote this function by $J\left(u^{*}\right)$. Let us denote, by K, the set of those functions $f(x)$ for which there exist fundamental sequences u with $J(u)=f(x)$, and denote, by \boldsymbol{U}, the set of all maximal collections. Then, $J\left(u^{*}\right)$ is a $(1,1)$ mapping of \boldsymbol{U} onto \boldsymbol{K} (Theorem 1). Furthermore, K coincides with the set of (E.R.) integrable functions in the special sense (or A-integrable functions). It results from I, Corollary 2) ${ }^{1)}$ that for $u \in u^{*}$ and $v \in u^{*}$, we have $I(u)=I(v)$. Therefore, we can write this value $I=I\left(u^{*}\right)$. We take $I(f)=I\left(J^{-1}(f)\right)$ as the value of the integral of $f(x)$ belonging to K. Theorem 2 shows that $I(f)=(A) \int_{a}^{b} f(x) d x=(E . R$. $) \int_{a}^{b} f(x) d x$ for all $f \in \boldsymbol{K}$.
3. The mapping $\mathbf{J}\left(\boldsymbol{u}^{*}\right)$. Let us remark that in the ranked space \mathcal{E} defined in the Note I, the fundamental sequence is defined in the following form: a monotone decreasing sequence of neighbourhoods $\left\{V_{n}\left(f_{n}\right) ; n=0,1,2, \cdots\right\}$ with $V_{n}\left(f_{n}\right) \in \mathfrak{B}_{\nu_{n}}$ is said to be fundamental if there exists a sub-sequence $\left\{V_{n_{i}}\left(f_{n_{i}}\right) ; i=0,1,2, \cdots\right\}$ such that $f_{n_{2 i}}=f_{n_{2 i+1}}$ and $\nu_{n_{2 i}}<\nu_{n_{2 i+1}}$ (without the equality).

We continue the study of the fundamental sequence in \mathcal{E}. First, we show a few Lemmas.

1) The reference number indicates the number of the Note.
