(3)

48. Calculus in Ranked Vector Spaces. I

By Masae YAMAGUCHI
Department of Mathematics, University of Hokkaido
(Comm. by Kinjirô Kunugi, M. J. A., April 12, 1968)

- § 1. Ranked vector space. 1.1. Ranked space. Let E be a neighborhood space, i.e., with every element $x \in E$ there is associated a non-empty set $\mathfrak{B}(x) = \{V(x)\}$ of subsets of E such that
 - $(1.1.1) \quad (1) \qquad V(x) \in \mathfrak{V}(x) \Rightarrow V(x) \ni x;$
- (2) For any U(x), $V(x) \in \mathfrak{V}(x)$, there exists a $W(x) \in \mathfrak{V}(x)$ such that

$$W(x) \subset U(x) \cap V(x)$$
;
 $E \in \mathfrak{V}(x)$.

Every element V(x) of $\mathfrak{V}(x)$ is called a *neighborhood* of a point $x \in E$.

(1.1.2) Definition. A neighborhood space E, on which a countably system \mathfrak{V}_0 , \mathfrak{V}_1 , \mathfrak{V}_2 , \cdots , \mathfrak{V}_n , \cdots consisting of neighborhoods ($E \in \mathfrak{V}_0$) is defined, is called a ranked space with the indicator ω_0 if and only if for every $x \in E$, $U(x) \in \mathfrak{V}(x)$ and for an integer n ($0 \le n < \omega_0$) there exists an integer m ($0 \le m < \omega_0$) and a neighborhood $V(x) \in \mathfrak{V}(x)$ such that

$$m \ge n$$
, $V(x) \in \mathfrak{V}_m$ and $V(x) \subset U(x)$.

A metric space is a ranked space. Another examples of ranked spaces shall be found in the paper of K. Kunugi [1].

- 1.2. Convergence. Let $\{x_n\}$ be a sequence in a ranked space E. Now we shall consider a convergence introduced by K. Kunugi [2].
- (1.2.1) Definition. We say that a sequence $\{x_n\}$ converges to x in a ranked space E, and we write $\{\lim_n x_n\} \ni x$ if and only if there exists a sequence $\{V_n(x)\}$ of neighborhoods and a sequence $\{\alpha_n\}$ of integers such that

$$\begin{split} V_0(x) \supset & V_1(x) \supset V_2(x) \supset \cdots \supset V_n(x) \supset \cdots, \quad 0 \leq n < \omega_0, \\ & \alpha_0 \leq \alpha_1 \leq \alpha_2 \leq \cdots \leq \alpha_n \leq \cdots, \quad 0 \leq n < \omega_0, \\ & \sup_n \alpha_n = \omega_0, \quad V_n(x) \ni x_n, \quad \text{and} \quad V_n(x) \in \mathfrak{B}_{\alpha_n}(x), \end{split}$$

for $n=0, 1, 2, \cdots$

If $\{\lim_{n} x_n\} \ni x$, we call x a limit of sequence $\{x_n\}$.

Then the following propositions hold:

(1.2.2) Proposition. Let $\{x_{n_i}\}$ be an arbitrary subsequence of a sequence $\{x_n\}$ in a ranked space E. If $\{\lim x_n\} \ni x$, then

$$\{\lim_{i} x_{n_i}\} \ni x.$$