79. On Banach Function Spaces

By Riichirô MURAKAMI

(Comm. by Kinjirô KUNUGI, M. J. A., May 13, 1968)

The theory of Riesz spaces (i.e. a normed vector lattice) plays an important role in the theory of normed function spaces. The theory have been developed by W. A. J. Luxemburg and A. C. Zaanen (see [1], [2]).

First I explain some terminologies (see [2]). Let X be a nonempty set and μ a non-negative, countable additive measure on X. We denote by (X, \sum, μ) a σ -finite measure space. Let M be the set of all real valued, μ -measurable functions on X, and M^+ the set of all non-negative functions of M. A function seminorm ρ is a mapping of M^+ into the real numbers and has the seminorm properties and $\rho(u) \leq \rho(v)$ if $u(x) \leq v(x)$ almost everywhere on X. We extend the domain of ρ to the whole M by defining $\rho(f) = \rho(|f|)$. The normed function space L_{ρ} is the set of $f \in M$ such that $\rho(f) < \infty$. We assume that there is at least one $f \in M$ such that $0 < \rho(f) < \infty$. We introduce two function seminorms ρ_1 , ρ_2 as follows

$$\rho_1(f) = \sup_{\rho(g) \leq 1} \left\{ \int |fg| d\mu \right\}, \qquad \rho_2(f) = \sup_{\rho_1(g) \leq 1} \left\{ \int |fg| d\mu \right\}.$$

A measurable subset B of X is called ρ -purely infinite, if $\rho(\chi_c) = \infty$ for every $C(\subset B)$ of positive measure. ρ is called a saturated function seminorm if there is no ρ -purely infinite subsets. There is no loss of generality even if we remove the maximal ρ , ρ_1 -purely infinite sets X_{∞} , X'_{∞} from X (see Theorem 12. 1 in [2]). Then ρ , ρ_1 , ρ_2 become the saturated function norms. We only use saturated function norms. Under this assumption, there is a sequence (π) ; $X_n \uparrow X$ such that $0 < \mu(X_n) < \infty$ and $0 < \rho(\chi_{X_n}) < \infty$ (see Theorem 8.7 in [2]). We call such a sequence $(\pi): X_n \uparrow X$ a ρ -exhaustive sequence. We introduce the partial ordering in L_{a} by the following way: $f \leq g$ if and only if $f(x) \le g(x)$ almost everywhere on X. Then L_a is a Riesz space with respect to the above ordering. Futher every nonempty subset of L_{ρ} which is bounded from above has a least upper bound in L_{ρ} , and it can be obtained by picking out an appropriate increasing sub-Such a Riesz space is called super Dedekind complete. sequence.

Let L_{ρ}^{*} be the Banach dual of L_{ρ} , and $L_{\rho,c}^{*}$ the subset of L_{ρ}^{*} having the following property; $F(\in L_{\rho}^{*})$ belongs to $L_{\rho,c}^{*}$ if and only if $|f_{n}(x)|\downarrow 0$ (a.e) implies $F(|f_{n}|) \rightarrow 0$.

We shall now define two subsets of L_{ρ} as follows.