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In this paper we show that the standard complexes of cotriples
are acyclic in most cases. This generalizes Proposition 4.1 of
Eilenberg and Moore [4]. For example we confirm that the ordinary
(co)homology of modules over an arbitrary ring (Cartan and Eilen-
berg [2] Chap. VI) is a cotriple (co)homology.

We follow the notions and notations of Eilenberg and Moore
[3], [4]. Let /be a pre-additive category with kernels, G=(G,
be a cotriple in ). Then {G/X}0 is a simplicial object with the
face operators e GG- G / G and the degeneracy operators
=GG-: G+ G+. The standard complex of the cotriple G
is defined by the sequence

(1) )Gn+l

where 3___i0(--1)e. Let be a projective class of sequences in
such that -projective objects are the objects G(A), A e obA and

their retracts.
Theorem. In the above situation, the sequence

( 2 ) G/(A)-G(A) )...

is a -projective resolution of A for any object A in A.
Proof. Every cotriple is generated by an adjoint pair of unc-

tors ([4] Theorem 2.2 or [5]):
( 3 (e, V): S-q T: (, _)
i.e. G-(G, e, ) is represented by (ST, e, ST). We may suppose that_, S, T are pointed. Since eS.S-ls, an object A e obA is a retract
of G(A’)--ST(A’) for some
S(B) or some B e obj. Hence the isomorphism of functors
( 4 ) )(S, )---_( ,T)
implies _-T-0 where 0 is the class of all split exact sequences in
_@ To prove the theorem we may show that the sequence

(5) TG+X(A) Tan Tax Te
TG(A) ... TG(A) T(A) 0

is split exact for every A e
Define morphisms t G G and u. G G/, nm, as

follows
t. =(1-1)(1-(1)... (1


