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(Comm. by Kinjir6 KVNVGr, M. J. A., May 13, 1968)

1.9. The special case. (1.9.1) Proposition. Let E be anormed
vector space, {xn} a sequence of E and x e E. Then for a sequence
{Xn} converges to x in the sense of ranked vector space it is necessary
and sufficient that it converges to x in the sense of norm, i.e.,

{lim Xn} x==}limllx-xll=O.
Proof. (a) Suppose that {limx} s x, i.e., there exists a se-

quence (U(x)} of neighborhoods of the point x and a sequence {a} of
integers such that,

Uo(x) U(x) U(x) Un(X) ", 0 <_n< o90,

ao<_a <_a<_ <_c <_ 0_<n<w0,
sup a 090, U(x) x, and U(x) e 3,

or n-O, 1, 2, ....
By (1.6.6), each U(x) is written in the following form, using

U(x) e 3,
U(x)=x+ V(0), n=0, 1, 2,

where V..(O)= {x; llxll<-}.
For every e>O, there exists a positive number N, using sup a

o90, such that

n>_N 1--<.
On

Since U(x)=x+ V.(O) x, V.,(O) Xn--X
1

". IlXn--Xll<.
O[n

Thus if n >_ N, then

On
.’. lim

(b) Suppose eoversely that lirnltXn-Xll-O, then, for 1, there
exists a positive number n such that

.’. VI(O) Xn--x, Xn+I--X, ..., Xn:+i--X,


