67. Characterizations of Self-Injective Rings

By Toyonori Kato
College of General Education, Tôhoku University, Sendai
(Comm. by Kenjiro Shoda, M. J. A., May 13, 1968)

In the theory of (non-commutative) rings, self-injective rings are one of the most attractive objects, and have been studied in the last two decades by many authors. It is well known that a ring R with identity element is right self-injective if and only if, for each right ideal I and for each map $f: I_{R} \rightarrow R_{R}$, there exists $a \in R$ such that $f(i)$ $=a i$ for all $i \in I$ (See Baer [1, Theorem 1]). The theory of QF-rings provides us with many characterizations of self-injective rings with minimum condition. For example, the following conditions are equivalent for a (left or right) Artinian ring R :
(1) R is right self-injective.
(2) $l(r(L))=L, r(l(I))=I$ for each left ideal L and right ideal I.
(3) If $a R($ resp. $R a), a \in R$, is simple then $l(r(a))=R a(r e s p . r(l(a))$ $=a R$).
For a discussion of the condition (3), see Kato [6, Lemma 2].
In this paper we shall give some characterizations of right selfinjective rings in terms of duality.

1. Preliminaries. Throughout this paper each ring R will be a ring with identity element and each module over R will be unital.

If A is a right R-module, let $A^{*}=\operatorname{Hom}_{R}(A, R)$ be its dual and let $\delta_{A}: A \rightarrow A^{* *}$ be the natural map. We call, as usual, A torsionless (resp. reflexive) if δ_{A} is a monomorphism (resp. an isomorphism). If X is a subset of A (resp. A^{*}), then we set

$$
l(X)=\left\{b \in A^{*} \mid b X=0\right\}(\text { resp. } r(X)=\{a \in A \mid X a=0\})
$$

We shall have need of the following lemma for our characterizations of right self-injective rings.

Lemma 1. (Rosenberg and Zelinsky [7, Theorem 1.1]). Let R be a right self-injective ring, A a right R-module, and B a finitely generated submodule of A^{*}. Then $l(r(B))=B$.

Proof. Write $B=R b_{1}+\cdots+R b_{n}, \quad b_{i} \in B$, and let $b \in l(r(B))$. Then $\bigcap_{i=1}^{n} r\left(b_{i}\right)=r(B) \subset r(b)$. Hence there exists a map $f: \stackrel{n}{\oplus} R_{R} \rightarrow R_{R}$ such that $\left(b_{1} a, \cdots, b_{n} a\right) \rightarrow b a, a \in A$, by virtue of the injectivity of R_{R}. Then

$$
\begin{aligned}
b a & =f\left(b_{1} a, \cdots, b_{n} a\right)=f\left(b_{1} a, 0, \cdots, 0\right)+\cdots+f\left(0, \cdots, 0, b_{n} a\right) \\
& =r_{1} b_{1} a+\cdots+r_{n} b_{n} a,
\end{aligned}
$$

