107. σ-Spaces and Closed Mappings. II

By Akihiro OKUYAMA Osaka Kyoiku University

(Comm. by Kinjirô KUNUGI, M. J. A., June 12, 1968)

1. This is the continuation of our previous paper [6] in which we proved the following:

Theorem. Let X be a normal $T_1 \sigma$ -space and f a closed mapping¹ of X onto a topological space Y. Then Y is a normal $T_1 \sigma$ -space such that the set $\{y | \partial f^{-1}(y) \text{ is not countably compact}\}$ is σ -discrete in Y, where $\partial f^{-1}(y)$ denotes the boundary of $f^{-1}(y)$.

The purpose of this paper is to consider some applications of the above theorem to σ_0 spaces and to prove three theorems below. We shall say that a topological space X is *countable-dimensional* or σ_0 if it is the sum of X_i , $i=1, 2, \cdots$, with dim $X_i \leq 0$, where dim X_i denotes the covering dimension of X_i defined by means of finite open coverings, and that X is *uncountable-dimensional* if it is not σ_0 .

Theorem 1. Let X be a collectionwise normal T_1 σ -space and f a closed mapping of X onto a topological space Y such that $\partial f^{-1}(y)$ is countable for each $y \in Y$ or discrete for each $y \in Y$. Then Y is a countable sum of subspaces, each of which is homeomorphic to a subspace of X.

Theorem 2. Let X be a collectionwise normal σ_0 and $T_1 \sigma$ -space and f a closed mapping of X onto an uncountable-dimensional space Y. Then Y contains an uncountable-dimensional subset N of Y such that $\partial f^{-1}(y)$ is uncountable for each $y \in Y$.

Theorem 3. Let X be a collectionwise normal σ_0 and $T_1 \sigma$ -space and f a closed mapping of X onto an uncountable-dimensional space Y. Then Y contains an uncountable-dimensional subset Y such that $\partial f^{-1}(y)$ is dense-in-itself, non-empty and compact for each $y \in Y$.

The first two theorems are generalizations of the results obtained by A. Arhangel'skii [2] which were proved in the case of spaces with countable nets and the last one is a generalization of K. Nagami's theorem [4] which was proved in the case of metric space, all of which concerned with a problem of P. Alexandroff [1] on the effect of closed mappings on countable-dimensional spaces.

2. To prove our results we need a few preliminaries.

Lemma 1. Let F be a collection of subsets of a topological space

¹⁾ All mappings in this paper are continuous.