106. σ -Spaces and Closed Mappings. I

By Akihiro OKUYAMA Osaka Kyoiku University

(Comm. by Kinjirô KUNUGI, M.J.A., June 12, 1968)

1. Introduction. In our previous paper [7] we have introduced the notion of a σ -locally finite net as a generalization of a countable net (cf. [2], [5]) and studied the spaces with σ -locally finite nets as a class of a topological spaces which contains all metric spaces.

Definition. A collection \mathfrak{B} of subsets of a topological space X is said to be a *net for* X if the following condition is satisfied :

For every point x of X and every open neighborhood U of x there exists an element B of \mathfrak{B} with $x \in B \subset U$.

A collection \mathfrak{B} of subsets of X is said to be a σ -locally finite net if it is a net and it is a union of a countable number of subcollections which are locally finite in X. We shall say that X is a σ -space if X has a σ -locally finite net (cf. [6]).

The notion of net was introduced and discussed by A. Arhangel'skii [1]¹⁾ and several results were obtained by him in [1], [2] and, also, by E. Michael [4] in the case of countable nets.

The purpose of this paper is to study the images of σ -spaces under closed mappings²⁾ and to prove the following two theorems.

Theorem 1. Let f be a closed mapping of a normal T_1 σ -space X onto a topological space Y. Then the set $\{y | \partial f^{-1}(y) \text{ is not countably compact}\}$ is a σ -discrete subset of Y; that is, it is a countable union of discrete subsets of Y, where $\partial f^{-1}(y)$ denotes the boundary of $f^{-1}(y)$ for each $y \in Y$.

Theorem 2. Let f be a closed mapping of a normal T_1 σ -space X onto a topological space Y. Then Y is a σ -space, too.

As regards Theorem 1 N. Lašnev [3] proved it in the case of metric space. He proved also, in another paper [4], the following theorem:

In order that a T_1 space X be a closed image of a metric space, it is necessary and sufficient that X is a Fréchet-Urysohn space³⁾ with

¹⁾ This fact was pointed out to us by Professor A. Arhangel'skii. We express our thanks to his advice.

²⁾ All mappings in this paper are continuous.

³⁾ X is a Fréchet-Urysohn space if, for every subset M of X and $x_0 \in \overline{M}$, there exists a sequence $\{x_n \mid n=1, 2, \cdots\}$ of points of M, converging to x_0 .