105. On Generalized Commuting Properties of Metric Automorphisms. I

By Nobuo Aoki

Department of Mathematics, Josai University, Saitama

(Comm. by Kinjirô KUNUGI, M.J.A., June 12, 1968)

Adler [1] has proved that the generalized commuting order of a totally ergodic automorphism on a compact metric abelian group is two. We shall prove that the generalized commuting order of a totally ergodic metric automorphism on the measure algebra associated with a finite measure space is two. The study in this paper depends on Adler's idea in [1].

The author wishes to express his thanks to Professor S. Tsurumi for his variable suggestions.

Let (X, Σ, m) be a finite measure space where X is a set of elements, Σ a σ -field of measurable subsets of X, and m a finite measure on Σ . A measure algebra associated with the measure space (X, Σ, m) is the Boolean algebra formed by identifying sets in Σ whose symmetric difference has measure zero. An automorphism of the measure algebra is called a *metric automorphism*. Let G be the group of all metric automorphisms on the measure algebra with the identity I. $C_n(T), n=1, 2, \cdots$ of subfamilies of G associated with a metric automorphism T are defined inductively as follows:

 $C_0(T) = \{I\},\$

 $C_n(T) = \{S \in G : STS^{-1}T^{-1} \in C_{n-1}(T)\}, n = 1, 2, \cdots$

If there exists an integer N such that $C_N(T) = C_{N+1}(T)$ then $C_n(T) = C_{n+1}(T)$ for all $n \ge N$ and in this case we define $N(T) = \min\{N: C_N(T) = C_{N+1}(T)\}$ and otherwise $N(T) = \infty$. N(T) is called the generalized commuting order of T. Let $L^2(X)$ be the Hilbert space of complex-valued square integrable functions defined on (X, Σ, m) and $L^{\infty}(X)$ the Banach space of complex-valued m essentially bounded functions defined on (X, Σ, m) . A metric automorphism T is said to have discrete spectrum if there is a basis 0 of $L^2(X)$ each term of which is a normalized proper function of the linear isometry V_T induced by T. Clearly 0 includes the circle group K in the complex plane. If T is ergodic then it turns out that |f|=1 a.e. for each $f \in \mathbf{0}$ and that $\mathbf{0} = \mathbf{0}(T) \times K$ where $\mathbf{0}(T)$ is a subgroup of 0 isomorphic to the factor group $\mathbf{0}/K$ [4]. If f is a proper function of T and α its proper value, then we denote by $\alpha_T(f)$ the proper value α . T is said to be