96. Calculus in Ranked Vector Spaces. VI

By Masae YAMAGUCHI

Department of Mathematics, University of Hokkaido

(Comm. by Kinjirô KUNUGI, M. J. A., June 12, 1968)

3.4. Differentiable mappings into a direct product.

(3.4.1) Proposition. Let F_1, F_2, \dots, F_m ; E_1, E_2, \dots, E_m be a family of separated ranked vector spaces and $f_1: F_1 \rightarrow E_1, f_2: F_2 \rightarrow E_2, \dots, f_m: F_m \rightarrow E_m$ a family of mappings. Let $\times f_i: \times F_i \rightarrow \times E_i$ be a mapping from $\times F_i$ into $\times E_i$ defined by,

 $(\times f_i)(x) = (f_1(x_1), f_2(x_2), \cdots, f_m(x_m))$

for any element $x = (x_1, x_2, \dots, x_m) \in \times F_i$. Then $\times f_i : \times F_i \to \times E_i$ is differentiable at the point $a = (a_1, a_2, \dots, a_m) \in \times F_i$ if and only if for each i $(i=1, 2, \dots, m)$ $f_i : F_i \to E_i$ is differentiable at the point $a_i \in F_i$, and then

 $(\times f_i)'(a) = \times f_i'(a_i).$

Proof. (a) Suppose that $\times f_i : \times F_i \to \times E_i$ is differentiable at the point $a = (a_1, a_2, \dots, a_m) \in \times F_i$, i.e., there exists a map $\times l_i \in L(\times F_i; \times E_i)$ such that the map $\times r_i : \times F_i \to \times E_i$ defined by

 $(\times f_i)(a+h) = (\times f_i)(a) + (\times l_i)(h) + (\times r_i)(h)$

is a remainder, where $h = (h_1, h_2, \dots, h_m) \in \times F_i$.

 $\therefore f_i(a_i+h_i)=f_i(a_i)+l_i(h_i)+r_i(h_i), \quad i=1, 2, \dots, m.$ We shall show that it follows from $\times l_i \in L(\times F_i; \times E_i)$ that for each $i \ (i=1, 2, \dots, m)$

$$l_i \in L(F_i; E_i).$$

In fact, by $\times l_i \in L(\times F_i; \times E_i)$, $(\times l_i)(h+h') = (\times l_i)(h) + (\times l_i)(h')$

where $h = (h_1, h_2, \dots, h_m)$, $h' = (h'_1, h'_2, \dots, h'_m)$ are arbitrary elements of $\times F_i$. From this we have

$$\begin{aligned} &(l_1(h_1+h_1'), l_2(h_2+h_2'), \cdots, l_m(h_m+h_m')) \\ &= (l_1(h_1), l_2(h_2), \cdots, l_m(h_m)) + (l_1(h_1'), l_2(h_2'), \cdots, l_m(h_m')) \\ &= (l_1(h_1) + l_1(h_1'), l_2(h_2) + l_2(h_2'), \cdots, l_m(h_m) + l_m(h_m')). \\ &\therefore \quad l_i(h_i+h_i') = l_i(h_i) + l_i(h_i'), \qquad i = 1, 2, \cdots, m. \end{aligned}$$

That is, l_1, l_2, \dots, l_m are linear.

By $\times l_i \in L(\times F_i; \times E_i)$, $\times l_i$ is continuous, and therefore it is obvious that l_i is continuous.

 $\therefore \quad l_i \in L(F_i; E_i), \qquad i=1, 2, \cdots, m.$

We shall next show that $\times r_i \in R(\times F_i; \times E_i)$ implies $r_i \in R(F_i; E_i)$, $i=1, 2, \dots, m$.