95. Calculus in Ranked Vector Spaces. V

By Masae YAMAGUCHI

Department of Mathematics, University of Hokkaido

(Comm. by Kinjirô KUNUGI, M. J. A., June 12, 1968)

(2.1.8) Proposition. If E_2 is a separated ranked vector space, then the only remainder $r \in R(E_1; E_2)$ which is linear is the zero map.

Proof. Let x be an arbitrary point of E_1 and consider a sequence $\{x_n\}$ such that $x_n = x$ for $n = 0, 1, 2, \cdots$. Then by (1.7.3) $\{x_n\}$ is a quasi-bounded sequence. Let $\{\lambda_n\}$ be a sequence in \Re with $\lambda_n \to 0$, then it follows from $r \in R(E_1; E_2)$ that

$$\left\{\lim \frac{r(\lambda_n x_n)}{\lambda_n}\right\} \ni 0.$$

The linearity of r implies

$$\frac{r(\lambda_n x_n)}{\lambda_n} = \frac{\lambda_n r(x_n)}{\lambda_n} = r(x_n)$$

$$\therefore \{\lim r(x_n)\} \ni 0.$$

On the other hand, using $r(x_n) = r(x)$ for $n = 0, 1, 2, \cdots$ and (1.2.4), we have

$$\{\lim r(x_n)\}\ni r(x).$$

Since E_2 is a separated ranked vector space, by (1.4.3)

$$r(x)=0$$
.

Hence $r: E_1 \rightarrow E_2$ is the zero map.

- 2.2. Differentiability at a point. In order to make use of (2.1.8) we assume henceforth that all spaces E_1, E_2, \cdots are separated.
- (2.2.1) Proposition. Let $f: E_1 \rightarrow E_2$ be a map between ranked vector spaces E_1 , E_2 . If there exists a map $l \in L(E_1; E_2)$ such that the map $r: E_1 \rightarrow E_2$ defined by

$$f(a+h) = f(a) + l(h) + r(h)$$

is a remainder, then l is uniquely determined.

Proof. Suppose that there exist two maps l_1 , $l_2 \in L(E_1; E_2)$ such that the maps r_1 , r_2 defined by

$$f(a+h) = f(a) + l_1(h) + r_1(h),$$

 $f(a+h) = f(a) + l_2(h) + r_2(h)$

are remainders. Then we have

$$l_1(h) - l_2(h) = r_2(h) - r_1(h)$$
.

Since by (2.1.4) $R(E_1; E_2)$ is a vector space and by (2.1.5) $L(E_1; E_2)$ is also a vector space,

$$r_2 - r_1 \in R(E_1; E_2)$$
 and $r_2 - r_1 \in L(E_1; E_2)$.