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1. Introduction and theorems. 1.1. Let fbe an even and inte-
grable function with period 2z and with mean value zero and let its
Fourier series be

( 1 f(x) an cos nx.

We suppose always lpoo. By L, we denote the space of such
functions whose p-th powers are integrable. We put

(2) An=--I a (n--l, 2, ...),

then Hardy [1] proved that there is an integrable function F such that

3 F(x) A cos nx.

Further he [1] proved the following
Theorem I. f e LpF e Lp.

Petersen [2] has proved that the space L, in Theorem I can be
replaced by the Lorentz space A [3] which consists of even and inte-
grable functions f with mean value zero such that

1),

where f* is the monotone decreasing rearrangement of ]f(t)]. It is
known that pcL ([3], p. 39). Petersen’s theorem" is as follows:

Theorem II. f e A,F e A.
1.2. Le$ L be the space of even and integrable func$ions f with

mean value zero and with neighbourhood of the origin where the p-h
power of ]f is integrable. Then Theorem I is generalized as follows"

Theorem
We introduce another space Mp which consists of even and inte-

grable functions f with mean value zero, satisfying the condition

(el. [4]). Nvidently MDM’ for 1<<’. By H61der’s inequality
we get

1) Petersen has proved similar theorems for the other Lorentz spaces.


