93. Fourier Series of Functions of Bounded Variation

By Masako Izumi and Shin-ichi Izumi
Department of Mathematics, The Australian National University, Canberra, Australia

(Comm. by Zyoiti Suetuna, m. J. A., June 12, 1968)

Let f be an integrable function with period 2π and let

$$
\begin{equation*}
f(x) \sim \frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) . \tag{1}
\end{equation*}
$$

The following theorems are well known ([1], pp. 48, 57-58; [2] pp. 71-72, 114-116) :

Theorem 1. If f is of bounded variation, then (2) $\quad\left|a_{n}\right| \leqq V / \pi n, \quad\left|b_{n}\right| \leqq V / \pi n$ for all $n>1$, where V is the total variation of f over $(0,2 \pi)$.

Theorem 2. If f is of bounded variation, then the Fourier series (1) converges to $\frac{1}{2}(f(x+0)+f(x-0))$ for every x.

Recently, M. Taibleson [3] has given an elementary proof of Theorem 1, except the constant V / π in (2), which is the best possible. We shall give elementary proofs of Theorems 1 and 2.

Proof of Theorem 1.
(3) $\pi a_{n}=\int_{0}^{2 \pi} f(x) \cos n x d x=\int_{-\pi / 2 n}^{2 \pi-\pi / 2 n}=\sum_{k=0}^{2 n-1} \int_{(k-1 / 2) \pi / n}^{(k+1 / 2) \pi / n}$

$$
\begin{aligned}
& =\sum_{k=0}^{2 n-1}(-1)^{k} \int_{-\pi / 2 n}^{\pi / 2 n} f(x+k \pi / n) \cos n x d x \\
& =\int_{-\pi / 2 n}^{\pi / 2 n}\left[\sum_{j=0}^{n-1}(f(x+2 j \pi / n)-f(x+(2 j+1) \pi / n))\right] \cos n x d x \\
& =-\int_{-\pi / 2 n}^{\pi / 2 n}\left[\sum_{j=0}^{n-1}(f(x+(2 j+1) \pi / n)-f(x+(2 j+2) \pi / n))\right] \cos n x d x
\end{aligned}
$$

and then

$$
\begin{aligned}
2 \pi\left|a_{n}\right| & \leqq \int_{-\pi / 2 n}^{\pi / 2 n}\left[\sum_{k=0}^{2 n-1}|f(x+k \pi / n)-f(x+(k+1) \pi / n)|\right] \cos n x d x \\
& \leqq V \int_{-\pi / 2 n}^{\pi / 2 n} \cos n x d x=2 V / n .
\end{aligned}
$$

Thus we get $\left|a_{n}\right| \leqq V / \pi n$. Similarly for b_{n}.
Proof of Theorem 2. We can suppose $f(x)=\frac{1}{2}[f(x+0)+f(x-0)]$ for all x. We put $f_{x}(t)=f(x+t)+f(x-t)-2 f(x)$, then $f_{x}(t)$ is continuous at $t=0$. We denote by M the upper bound of $\left|f_{x}(t)\right|$ and by $V(a, b)$ the total variation of f_{x} on the interval (a, b), then we can easily see that

