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H. Onose extending a result of the author [2], gave in [7] a suffi-
cient condition for all solutions of the equation
( * x()+ p(t)g(x, x’,..., x(n-1))--0
to oscillate, provided that n is even and g homogeneous of degree
2s/1.

Here we improve Onose’s result considerably, by assuming quite
weaker conditions which guarantee the oscillation of all solutions of
( ), and moreover, we consider the case n=odd. Thus, we also ira-
prove a result due to Howard ([1], Theorem 2), and generalize results
o LiSko and vec [5], and Mikusifiski [6].

All *unctions considered are supposed to be continuous on their
domains, and such that they guarantee the existence of solutions o
(.) *or all large t (n will always be supposed to be >1). In what
ollows, we consider only such solutions which are nontrivial *or all
large t. By an oscillatory solution of (.), we mean a solution with
arbitrarily large zeros.

1. The ollowing theorem has been proved in [4]
Theorem 1. For n even, let (.) satisfy the following assump-

tions
(i)

(S)

(ii)

p IoR+ =(O, +c), I=[to, + c), t0_0, and

It-p(t)dt + c
g Rn--.R=(--c<), + c), xlg(xl, x, ..., Xn)O

for every (xl, ..., x) e R
with x 0

then every bounded solution of ( ) is oscillatory.
Now we show that an analogous result holds or the case n=odd.

In act, we establish the ollowing
Lemma. Suppose that n is odd, and that the functions p, g

satisfy the hypotheses of Theorem 1; then every bounded solution of
( ) is oscillatory, or tends to zero monotonically as t--. + c.
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