181. On Nuclear Spaces with Fundamental System of Bounded Sets. II

By Shunsuke Funakosi
(Comm. by Kinjirô Kunugi, m. J. A., Oct. 12, 1968)

A locally convex vector space with a countable fundamental system of bounded sets has already been developed in several bibliographies. Barrelled spaces and quasi-barrelled spaces with a countable fundamental system of compact sets has been studied by J. Dieudonné [2] and by M. Mahowald and G. Gould [7] respectively.

We considered, the open mapring and closed graph theorems on a nuclear dualmetric space in the previous paper [4].

Let E be a normed space then E is a nuclear space if and only if it is finite dimentional. It is also known that a normed space can only be a Montel (i.e., barrelled and perfect) space if it is finite dimensional. In this paper, we prove a nuclear dualmetric space which is quasi-complete is Montel space, and using this result, we consider analogous theorem to M. Mahowald and G. Gould [7], in nuclear space.

For nuclear spaces and its related notion, see A. Pietsch [8] and S. Funakosi [4]. Most of the definitions and notations of the locally convex vector spaces are taken from N. Bourbaki [1] and T. Husain [5].

Definition. Let E be a locally convex space and E^{\prime} its dual.
(1) If only all countable strong bounded subset of E^{\prime} are equicontinuous, then E is called the σ-quasi-barrelled.
(2) Let E be a σ-quasi-barrelled space, if there exists a countable fundamental system of bounded subset in E, then E is called the dualmetric space.

The following Lemma is well known.
Lemma 1. A metric or dualmetric locally convex vector space E is nuclear if and only if its dualnuclear.

The proof is given in A. Pietsch [8].
Proposition 1. Each nuclear dualmetric space E is a quasibarrelled.

Proof. By Lemma 1, the strong dual $E^{\prime \beta}$ is nuclear, so an arbitrary bounded subset of $E^{\prime \beta}$ is separable (see, the proof of Theorem 4, (a) in S. Funakosi [4]). Denote by B strong bounded subset of E^{\prime}, then $B \subseteq \overline{\left\{a_{n} ; a_{n} \in B\right\}}$. On the other hand, since E is dualmetric it is a

