No. 8]

180. Note on Semigroups, which are Semilattices of Groups

By S. LAJOS

K. Marx University, Budapest, Hungary

(Comm. by Kinjirô KUNUGI, M. J. A., Oct. 12, 1968)

Let S be a semigroup. Following the terminology of A. H. Clifford [1], [2] we say that S is a semilattice of groups if S is a settheoretical union of a set $\{G_{\alpha}, \alpha \in I\}$ of mutually disjoint subgroups G_{α} such that, for every α , β in I, the products $G_{\alpha}G_{\beta}$ and $G_{\beta}G_{\alpha}$ are both contained in the same G_{γ} ($\gamma \in I$).

Recently the author proved the following characterization of semigroups, which are semilattices of groups (see [3]).

Theorem 1. A semigroup S is a semilattice of groups if and only if

In this note we give another characterization of semigroups, which are semilattices of groups.

Theorem 2. A semigroup S is a semilattice of groups if and only if

 $\begin{array}{ccc} (3) & L \cap A = LA \\ and \\ (4) & R \cap A = AR \end{array}$

for any left ideal L, right ideal R, and two-sided ideal A of S.

Proof. Necessity. Let S be a semigroup which is a semilattice of groups. Then it is an inverse semigroup every one-sided ideal in which is a two-sided ideal (see [2]). This implies that

$$(5) A \cap B = AB$$

for any two ideals A, B of S. Therefore the relations (3), (4) are satisfied.

Sufficiency. Let S be a semigroup having the properties (3) and (4) for any left ideal L, right ideal R, and two-sided ideal A of S. In case of A=S the equality (3) implies

$$(6) L \cap S = LS.$$

This means that any left ideal L is also a right ideal of S, whence L