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Let S be a semigroup. Following the terminology of A. H.
Clifford [1], [2] we say that S is a semilattice of groups if S is a set-
theoretical union of a set {G,, a € I} of mutually disjoint subgroups G,
such that, for every a, 8 in I, the products G,G, and G,G, are both
contained in the same G, (y € I).

Recently the author proved the following characterization of semi-
groups, which are semilattices of groups (see [3]).

Theorem 1. A semigroup S is a semilattice of groups if and
only if

(1) LNL,=L,L,
and
(2) R,NR,=R.R,

for any two left ideals L,, L, of S and right ideals R,, R, of S,
respectively.

In this note we give another characterization of semigroups,
which are semilattices of groups.

Theorem 2. A semigroup S is a semilattice of groups if and
only if

(3) LNA=LA
and
(4) RNA=AR

for any left ideal L, right ideal R, and two-sided ideal A of S.

Proof. Necessity. Let S be a semigroup which is a semilattice
of groups. Then it is an inverse semigroup every one-sided ideal in
which is a two-sided ideal (see [2]). This implies that
(5) ANB=AB
for any two ideals A, B of S. Therefore the relations (3), (4) are
satisfied.

Sufficiency. Let S be a semigroup having the properties (8) and
(4) for any left ideal L, right ideal R, and two-sided ideal A of S. In
case of A=S the equality (8) implies
(6) LNS=LS.

This means that any left ideal L is also a right ideal of S, whence L



