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1o Ky Fan and A. J. Hoffman [2] established the following ma-
trix inequalities" For every unitarily invariant norm of matrices,

( ) If A is an n n matrix and A-UH where U is unitary and
H is positive-definite, then

[[A-- U[[ [[A- W[[ __< [[A + U[[,
or every unitary matrix W [2; Theorem 1],

(ii) I A is an n x n matrix, hen

< ]IA--H]I,
2

for every hermitean matrix H [2; Theorem 2],
(iii) I H and K are hermitean n x n matrices, then

[](H--i)(H+ O--(K-i)(K/ i)- _<_2[[H--K[[,
[2; Theorem 3].

In this note, we shall extend these inequalities of Fan and Hoff-
man for finite factors.

2. Throughout the note, let be a finite aetor with the (normal-
ized) aithful normal trace ? such that ?(1)--1 (ef. [1]). For each
Te,

defines a norm on , by which becomes a prehilbert space. In a
finite factor Z, if T--V IT[ is the polar decomposition of T, then the
partially isometric operator V can be extended to a unitary U e Z
such that T= U T [.

3. We shall show that the unitary operator U appeared in the
polar decomposition is one of the nearest unitary operators to the
given T in , which will give an illustration of the polar decomposi-
tion in the finite factor "Theorem 1. Let T be any operator in A and T-UH the polar
decomposition of T, where U is a unitary, then for any unitary
operator V in ,
1 ) T-- UI[ T- Vile.<= T-F Ull..

Proof. By the definition o the norm,
]]T-- U[]--[] UH- U][=q(H--2H+ 1),


