176. On the Sets of Points in the Ranked Space. III

By Kin'ichi YAJIMA,*) Yukio SAKAMOTO,**) and Hidetake NAGASHIMA***)

(Comm. by Kinjirô KUNUGI, M. J. A., Oct. 12, 1968)

In this paper, for a subset A of a ranked space R [1], we shall define two subsets of the ranked space, \overline{A} and \widetilde{A} . Both of them have some properties which are analogous to the closure in the usual topological space. We shall introduce several propositions with respect to \overline{A} and \widetilde{A} . We have used the same terminology as that introduced in the paper "On the sets of points in the ranked space II." [6].

Definition. Let A be a subset of a ranked space R. Then \overline{A} and \widetilde{A} are defined as follows.

 $\bar{A} = \{x ; \exists \{V_{\alpha}(x)\}, V_{\alpha}(x) \cap A \neq \phi \text{ for all } \alpha\},\$

 $\tilde{A} = \{x ; \forall \{V_{\alpha}(x)\}, V_{\alpha}(x) \cap A \neq \phi \text{ for all } \alpha\},\$

where $\{V_{\alpha}(x)\}$ is a fundamental sequence of neighborhoods with respect to a point x of R [2] and α is a natural number. We say that \overline{A} is an *r*-closure of A and that \widetilde{A} is a quasi *r*-closure of A.

Proposition 1. If A is a subset of a ranked space R, then

(1) $\tilde{A} \subseteq \bar{A}$,

(2) if R satisfies Condition (M) [3] then $A = \overline{A}$.

Proof. It is easy to prove (1).

If $p \in \overline{A}$, then by the definition there exists a fundamental sequence of neighborhoods of p, $\{V_{\alpha}(p)\}$, such that $V_{\alpha}(p) \cap A \neq \phi$ for all α .

Let $\{U_{\beta}(p)\}$ be an arbitrary fundamental sequence of neighborhoods of p, and $V_{\alpha}(p) \in \mathfrak{U}_{\tau_{\alpha}}$ and $U_{\beta}(p) \in \mathfrak{U}_{\mathfrak{s}_{\beta}}$. Then for each β , there exists γ_{α} such that $\delta_{\beta} \leq \gamma_{\alpha}$. By Condition (M), $U_{\beta}(p) \supseteq V_{\alpha}(p)$, consequently $U_{\beta}(p) \cap A \neq \phi$. Therefore $p \in \tilde{A}$, that implies $\bar{A} \subseteq \tilde{A}$. Then, $\bar{A} = \tilde{A}$ because by (1) $\bar{A} \supseteq \tilde{A}$.

Remark 1. In general $\overline{A} \neq \widetilde{A}$. For example, if $A = \{z_n\}$, where $\{z_n\}$ is a sequence of points in Example 1 [3], then $\overline{A} \neq \widetilde{A}$.

Proposition 2. If A and B are subsets of a ranked space, then

- (1) if $A \subseteq B$, then $\overline{A} \subseteq \overline{B}$ and $\widetilde{A} \subseteq \widetilde{B}$,
- (2) $A \subseteq \overline{A} \text{ and } A \subseteq \widetilde{A}$,
- (3) $\overline{A \cup B} = \overline{A} \cup \overline{B}$ and $\overline{A \cup B} = \overline{A} \cup \overline{B}$,

^{*)} Japanese National Railways.

^{**)} Japan Women's University.

^{***)} Hokkaido University of Education.