[Vol. 44,

174. An Algebraic Formulation of K-N **Propositional Calculus.** IV

By Shôtarô TANAKA

(Comm. by Kinjirô KUNUGI, M. J. A., Oct. 12, 1968)

In his paper [1], K. Iséki has defined the NK-algebra. For the details of the NK-algebra, see [1]. The conditions of the NK-algebra are as follows:

a) $\sim (p*p)*p=0$. b) $\sim p*(q*p) = 0$.

c) $\sim \sim (\sim \sim (p*r)*\sim (r*q))*\sim (\sim q*p)=0$,

d) Let α , β be expressions in this system, then $\sim \sim \beta * \sim \alpha = 0$ and $\alpha = 0$ imply $\beta = 0$.

In my paper [2], I showed that the NK-algebra is characterized by the following conditions:

a) $\sim (p*p)*p=0$,

b') $\sim q * (q * p) = 0$,

c) $\sim \sim (\sim \sim (p*r)*\sim (r*q))*\sim (\sim q*p)=0,$

d) Let α , β be expressions in this system, then $\sim \sim \beta * \sim \alpha = 0$ and $\alpha = 0$ imply $\beta = 0$.

1) $\sim (p*p)*p=0.$

2) $p*(q*\sim p)=0.$

3) $\sim \sim (\sim \sim (p*r)*\sim (r*q))*\sim (\sim q*p)=0.$

4) $\sim \sim \beta \ast \sim \alpha = 0$ and $\alpha = 0$ imply $\beta = 0$, where α , β , are expressions in this system. We shall show that 1)-4 imply b').

In 3), put $p = \beta$, $q = \alpha$, $r = \gamma$, then by 4) we have

A) $\sim \alpha * \beta = 0$ implies $\sim \sim (\beta * \gamma) * \sim (\gamma * \alpha) = 0.$ Then we have

B) $\sim \alpha * \beta = 0$ and $\gamma * \alpha = 0$ imply $\beta * \gamma = 0$.

C) $\sim \alpha * \beta = 0$ and $\sim \gamma * \alpha = 0$ imply $\beta * \sim \gamma = 0$.

In B), put $\alpha = \sim p \ast \sim p$, $\beta = \sim p$, $\gamma = p$, then by 1) and by 2) we have

5) $\sim p * p = 0.$

In 3), put q=p, then $\sim \sim (\sim \sim (p*r)*\sim (r*p))*\sim (\sim p*p)=0$. By 5) we have

6) $\sim \sim (p*r)*\sim (r*p)=0.$

In 6), put $p = \alpha$, $r = \beta$, then $\sim \sim (\alpha * \beta) * \sim (\beta * \alpha) = 0$.

Hence by 4) we have

D) $\beta * \alpha = 0$ implies $\alpha * \beta = 0$.