169. On Lacunary Trigonometric Series. II

By Shigeru Takahashi
Department of Mathematics, Kanazawa University, Kanazawa
(Comm. by Zyoiti Suetuna, M. J. A., Oct. 12, 1968)

§ 1. Introduction. In [3] we have proved
Theorem A. Let $\left\{n_{k}\right\}$ be a sequence of positive integers and $\left\{a_{k}\right\}$ a sequence of non-negative real numbers for which the conditions

$$
\begin{gather*}
n_{k+1}>n_{k}\left(1+c k^{-\alpha}\right), \quad k=1,2, \cdots, \tag{1.1}\\
A_{N}=\left(2^{-1} \sum_{k=1}^{N} a_{k}^{2}\right)^{1 / 2} \rightarrow+\infty, \quad \text { as } N \rightarrow+\infty, \tag{1.2}
\end{gather*}
$$

and

$$
\begin{equation*}
a_{N}=o\left(A_{N} N^{-\alpha}\right), \quad \text { as } N \rightarrow+\infty, \tag{1.3}
\end{equation*}
$$

are satisfied, where c and α are any given constants such that

$$
\begin{equation*}
c>0 \quad \text { and } \quad 0 \leq \alpha \leq 1 / 2 . \tag{1.4}
\end{equation*}
$$

Then we have, for all x,

$$
\begin{gather*}
\lim _{N \rightarrow \infty}\left|\left\{t ; t \in E, \sum_{k=1}^{N} a_{k c} \cos 2 \pi n_{k c}\left(t+\alpha_{k}\right) \leq x A_{N}\right\}\right| /|E| \tag{1.5}\\
\left.=(2 \pi)^{-1 / 2} \int_{-\infty}^{x} \exp \left(-u^{2} / 2\right) d u, *\right)
\end{gather*}
$$

where $E \subset[0,1]$ is any given set of positive measure and $\left\{\alpha_{k}\right\}$ any given sequence of real numbers.

This theorem was first proved by R. Salem and A. Zygmund in case of $\alpha=0$, where $\left\{n_{k}\right\}$ satisfies the so-called Hadamard's gap condition (cf. [4], (5.5), pp. 264-268). In that case they also remarked that under the hypothesis (1.2) the condition (1.3) is necessary for the validity of (1.5) (cf. [4], (5.27), pp. 268-269).

Further, in [2] P. Erdös has pointed out that for every positive constant c there exists a sequence of positive integers $\left\{n_{k}\right\}$ such that $n_{k+1}>n_{k}\left(1+c k^{-1 / 2}\right), k \geq 1$, and (1.5) is not true for $a_{k}=1, k \geq 1$, and $E=[0,1]$. But I could not follow his argument on the example.

The purpose of the present note is to prove the following
Theorem B. For any given constants $c>0$ and $0 \leq \alpha \leq 1 / 2$, there exist sequences of positive integers $\left\{n_{k}\right\}$ and non-negative real numbers $\left\{a_{k}\right\}$ for which the conditions (1.1), (1.2) and

$$
\begin{equation*}
a_{N}=O\left(A_{N} N^{-\alpha}\right), \quad \text { as } N \rightarrow+\infty, \tag{1.6}
\end{equation*}
$$

are satisfied, but (1.5) is not true for $E=[0,1]$ and $\alpha_{k}=0, k \geq 1$.
The above theorem shows that in Theorem A the condition (1.3) is
*) $|E|$ denotes the Lebesgue measure of a set E.

