201. On Numbers Expressible as a Weighted Sum of Powers

By Palahenedi Hewage Diananda
Department of Mathematics, University of Singapore, Singapore

(Comm. by Zyoiti Suetuna, m. J.A., Nov. 12, 1968)

1. In a recent paper [3] we proved

Theorem 1. There is n_{0} such that for every $n \geqq n_{0}$ there are positive integers x and y satisfying

$$
n<x^{f}+y^{h}<n+c n^{p}
$$

where f and h are any integers such that $f \geqq h \geqq 2$,

$$
c=h f^{1-(1 / h)} \text { and } p=\left(1-\frac{1}{f}\right)\left(1-\frac{1}{h}\right) .
$$

Mordell [4] has recently proved
Theorem 2. There are non-negative integers x_{1}, \cdots, x_{k} satisfying

$$
n \leqq a_{1} x_{1}^{h_{1}}+\cdots+a_{k} x_{k}^{h_{k}}<n+c n^{p}+O\left(n^{p\left(h_{k}-2\right) /\left(h_{k}-1\right)}\right)
$$

where $a_{1}, \cdots, a_{k} \geqq 1,1<h_{1} \leqq h_{2} \leqq \cdots \leqq h_{k}$,

$$
c=\left(a_{1}^{1 / h_{1}} h_{1}\right)\left(a_{2}^{1 / h_{2}} h_{2}\right)^{1-\left(1 / h_{1}\right)}\left(a_{3}^{1 / h_{3}} h_{3}\right)^{\left(1-\left(1 / h_{1}\right)\left(1-\left(1 / h_{2}\right)\right)\right.}
$$

$$
\cdots\left(a_{k}^{1 / h_{k}} h_{k}\right)^{\left(1-\left(1 / h_{1}\right)\right) \cdots\left(1-\left(1 / h_{k-1}\right)\right)}
$$

and

$$
p=\left(1-\frac{1}{h_{1}}\right) \cdots\left(1-\frac{1}{h_{k}}\right)
$$

Theorem 1 generalizes some results previously obtained by Bambah and Chowla [1], Uchiyama [5] and the author [2] while Theorem 2 deals with a problem more general than those discussed in [1], [5], [2] and [3].

In this note we prove the following generalization of Theorem 1 and refinement of Theorem 2:

Theorem 3. There is n_{0} such that for every real $n \geqq n_{0}$ there are positive integers x_{1}, \cdots, x_{k} satisfying

$$
n<a_{1} x_{1}^{h_{1}}+\cdots+a_{k} x_{k}^{h_{k}}<n+c n^{p}
$$

where a_{1}, \cdots, a_{k} are real and $>0, h_{1}, \cdots, h_{k}$ are real and $>1, k>1$, c and p are as in Theorem 2 and

$$
a_{1} h_{1}^{h_{1}} \leqq a_{2} h_{2}^{h_{2}} \leqq \cdots \leqq a_{k} h_{k}^{h_{k}} .
$$

In what follows we write [t] for the greatest integer $\leqq t$.
2. We first prove the following generalization of Theorem 4A of [2]:

Theorem 4. Let a and $b>0, f$ and $h>1$,

$$
N=N(n)=a\left\{(n / a)^{1 / f}+1\right\}^{f}-n+b
$$

and

