200. An Extension of Wild's Sum for Solving Certain Non-linear Equation of Measures

By Shigeru TANAKA Department of Mathematics, Osaka University, Osaka (Comm. by Zyoiti SUETUNA, M. J. A., Nov. 12, 1968)

1. Let S be a compact space with the second countability axiom. Let \mathfrak{W} be the set of all signed measures on the topological Borel field of S with finite total variation, and let \mathfrak{W}_s (resp. \mathfrak{W}_p) be the subset of \mathfrak{W} of all substochastic (resp. probability) measures. In \mathfrak{W} , we introduce the topology of weak convergence. Consider a non-linear equation:

(1)
$$\frac{du(t)}{dt} = B[u(t)] - u(t), \qquad u(0+) = f^{1},$$

where the initial value f and the solution u(t) are in \mathfrak{W}_s and B[u] is given by the formula:

$$(2) B[u] = \sum_{n=1}^{\infty} a_n B_n[u, \cdots, u],$$

for given $\{a_n\}_{n=1}^{\infty}$ and $\{B_n\}_{n=1}^{\infty}$ such that i) a_n is a non-negative real number, $a_1 < 1$ and $\sum_{n=1}^{\infty} a_n = 1$, ii) B_n is a mapping from \mathfrak{B}^n to \mathfrak{B} , multilinear, continuous and maps \mathfrak{B}_p^n into \mathfrak{B}_p , for each $n \ge 1$, where \mathfrak{B}^n and \mathfrak{B}_p^n mean the *n*-fold direct products of the spaces \mathfrak{B} and \mathfrak{B}_p respectively. This equation was considered by H. Tanaka [6] and T. Ueno [7], in a slightly different form, to extend the result of McKean [5] and Johnson [4] concerning the propagation of chaos. In [6], the following condition:

(3)
$$\int_{1-\varepsilon}^{1} \frac{d\xi}{\xi - \sum_{n=1}^{\infty} a_n \xi^n} = +\infty \quad \text{for any} \quad \varepsilon > 0,$$

is assumed to prove the propagation of chaos. This condition seems closely related to the condition of the uniqueness of the solution of (1). In this paper, as a remark to [6], we give an extension of Wild's sum for the solution of the equation (1) and investigate the relation between the condition (3) and the uniqueness of the solution of (1).

¹⁾ In this paper, the continuity, differentiability and integral of u(t) are in the sense of topology of weak convergence in \mathfrak{M} . In equation (1), we assume the differentiability of u(t) as a matter of course.