232. On M. and M*-Spaces

By Tadashi Ishif
Utsunomiya University
(Comm. by Kinjirô Kunugi, m. J. A., Dec. 12, 1968)

1. In [2], K. Morita has introduced the notion of M-spaces. A topological space X is an M-space if there exists a normal sequence $\left\{\mathfrak{H}_{i} \mid i=1,2, \cdots\right\}$ of open coverings of X satisfying the condition (M) below :
(M) $\left\{\begin{array}{l}\text { If }\left\{K_{i}\right\} \text { is a sequence of non-empty subsets of } X \text { such that } \\ K_{i+1} \subset K_{i}, K_{i} \subset \operatorname{St}\left(x_{0}, \mathfrak{H}_{i}\right) \text { for each } i \text { and for some fixed point } x_{0}\end{array}\right.$ of X, then $\bar{K}_{i} \neq \phi$.
On the other hand, in [1], we introduced the notion of M^{*}-spaces. A topological space X is an M^{*}-space if there exists a sequence $\left\{\mathscr{\mho}_{i} \mid i\right.$ $=1,2, \cdots\}$ of locally finite closed coverings of X satisfying Condition (M), where we may assume without loss of generality that \mathfrak{F}_{i+1} is a refinement of $\mathscr{\gamma}_{i}$ for each i. As for the relations between M - and M^{*} spaces, the following results are proved by K. Morita [3].
(1) There exists an M^{*}-space which is locally compact Hausdorff but is not an M-space.
(2) A collectionwise normal space is an M-space if and only if it is an M^{*}-space.
The first result is a direct consequence of the following (cf. [3]) : There is a perfect map $f: X \rightarrow Y$ such that X is an M-space but Y is not, and such that X, Y are locally compact Hausdorff spaces. In fact, the space Y is an M^{*}-space as the image under a perfect map f of an M^{*}-space X by [1, Theorem 2.3 in I]. ${ }^{1)}$ However, it seems to be unknown whether a normal M^{*}-space is an M-space or not. The purpose of this paper is to give an affirmative answer for this problem.
2. We shall prove the following main theorem.

Theorem 2.1. A normal space X is an M-space if and only if it is an M^{*}-space.

Before proving Theorem 2.1, we mention a fundamental lemma, which is essentially due to K. Morita [3].

Lemma 2.2. Let X be an M^{*}-space with a sequence $\left\{\mathscr{\mathscr { F }}_{i}\right\}$ of locally finite closed coverings of X satisfying Condition (M), where \widetilde{F}_{i+1} is a refinement of \mathfrak{F}_{i} for each i. Then the following statements are valid.
(a) If $\left\{K_{i}\right\}$ is a sequence of non-empty subsets of X such that

[^0]
[^0]: 1) In [1, Theorem 2.3 in I], the assumption that X is T_{1} is unnecessary.
