228. On a Theorem on Commutative Decompositions

By Kiyoshi ISÉKI
(Comm. by Kinjirô Kunugi, m. J. A., Dec. 12, 1968)

J. R. Büchi [1] introduced a useful notion called a pair of functions (f, f^{\prime}). Let E, E^{\prime} be sets, and let $f: 2^{E} \rightarrow 2^{E^{\prime}}, f^{\prime}: 2^{E^{\prime}} \rightarrow 2^{E}$ be functions. Then (f, f^{\prime}) is a pair of functions, if $A^{\prime} \cap f(A)=\phi$ implies $f^{\prime}\left(A^{\prime}\right) \cap A=\phi$, where $A \subset E, A^{\prime} \subset E^{\prime}$. As shown by J. R. Büchi [1], an equivalence relation or a decomposition of E is defined by a pair of functions (f, f^{\prime}).

Let $\left(f, f^{\prime}\right)$ be a pair of functions from 2^{E} to 2^{E}. If 1) $A \subset f(A)$, 2) $f(A)=f^{\prime}(A)$, and 3) $f(f(A)) \subset f(A)$ for every $A \subset E$, then $\left(f, f^{\prime}\right)$ or f is called an equivalence relation.

In my note [2], we discussed some classical results on mappings by the notion of pair of functions. In this Note, we shall consider Sik results on the equivalence relations [3].

Theorem. Let f, g be two equivalence relations on a set E. The following propositions are equivalent.

1) The composition $f g$ is an equivalence relation.
2) for any subsets A, B of $E, f(A) \cap g(B)=\phi$ implies $g(A) \cap f(B)$ $=\phi$.
3) for any subsets A, B of $E, f(A) \cap g(B) \neq \phi$ implies $g(A) \cap f(B)$ $\neq \phi$.
4) for any subset A of $E, f g(A)=g f(A)$.

Proof. It is obvious that the conditions 2) and 3) are equivalent. To prove 3$) \Rightarrow 4$), let $x \in f g(A)$, then

$$
x \cap f(g(A)) \neq \phi
$$

Hence $f(x) \cap g(A) \neq \phi$. From 3), we have $g(x) \cap f(A) \neq \phi$, which means $x \in g f(A)$. Therefore $f g(A) \subset g f(A)$. Similarly we have $g f(A)$ $\subset f g(A)$.

To prove 4) $\Rightarrow 3$), suppose that $f(A) \cap g(B) \neq \phi$, then $A \cap f g(B) \neq \phi$. By 4), we have $A \cap g f(B) \neq \phi$, and then $g(A) \cap f(B) \neq \phi$.

Therefore 3) and 4) are equivalent.
Next we shall prove 1$) \Rightarrow 2$).
Let $f(A) \cap g(B)=\phi$, then we have

$$
A \cap f g(B)=\phi
$$

Therefore $(f g)^{\prime}(A) \cap B=\phi$. Since $f g$ is the equivalence relation, $(f g)^{\prime}$ $f g$. Hence $f g(A) \cap B=\phi$, and then $g(A) \cap f(B)=\phi$, which shows 3).

Finally we show 4$) \Rightarrow 1$). We must verify the three conditions of an equivalence relation.

