227. Pseudo Quasi Metric Spaces

By Yong-Woon Kim
University of Alberta and Wisconsin State University
(Comm. by Kinjirô Kunugi, m. J. A., Dec. 12, 1968)

Introduction. Kelly [3] is the first one who studied the theory of bitopological space. A motivation for the study of bitopological spaces is to generalize the pseudo quasi metric space (which we denote as $p-q$ metric). In this paper one observes the relation between $p-q$ metric spaces and the bitopological spaces which are generated by them. In chapter 2 , one defines p-complete normal (i.e., pairwise complete normal) space and shows that $p-q$ metric space is p-complete normal. In the last chapter the $p-q$ metrisable problem is considered, and one of the Sion and Zelmer's result [4] is proved directly by a bitopological method. Throughout notations and definitions follow [2] and [3].

Definition. A $p-q$ metric on set X is a non-negative real valued function $p: X \times X \rightarrow R$ (reals) such that

$$
\begin{align*}
& p(x, x)=0 \tag{1}\\
& p(x, z) \leq p(x, y)+p(y, z) \text { for all } x, y, z \in X .
\end{align*}
$$

In addition, if p satisfies
(3) $p(x, y)=0$ only if $x=y$
then p is said to be a quasi metric. If p satisfies

$$
\begin{equation*}
p(x, y)=p(y, x) \tag{4}
\end{equation*}
$$

with (1) and (2) then p is a pseudo metric. Obviously, if (1), (2), (3), and (4) are satisfied then it is a metric in the usual sense.

Let p be a $p-q$ metric on X and let q be defined by $q(x, y)=p(y$, x). Then q is a $p-q$ metric on X and q is said to be the conjugate $p-q$ metric of p. We denote the bitopological space X generated by $\left\{S_{p}(x, \varepsilon)=\{y \mid p(x, y)<\varepsilon\}\right\}$ and $\left\{S_{q}(x, \varepsilon)=\{y \mid q(x, y)<\varepsilon\}\right\}$ as (X, P, Q) (see [3]). Throughout this paper (X, L_{1}, L_{2}) denotes a bitopological space with topology L_{1} and L_{2}.
(1-2) Definition (Kelly [3]). A bitopological space (X, L_{1}, L_{2}) is said to be p-normal (i.e., pairwise normal) if for any L_{1}-closed set A and L_{2}-closed set B with $A \cap B=\phi$, there exist an L_{2}-open U and an L_{1}-open set V such that $A \subset U, B \subset V$, and $U \cap V=\phi$.

Kelly [3] defined p-regular bitopological space in an analogous manner.
(1-3) Definition. Let (X, L_{1}, L_{2}) be a bitopological space,

