222. Remark on Yokoi's Theorem Concerning the Basis of Algebraic Integers and Tame Ramification

By Yoshimasa Miyata
(Comm. by Kenjiro Shoda, m. J. A., Dec. 12, 1968)

In this paper we shall prove a theorem (Theorem 1 in the following) which, the author thinks, is essentially a refinement of Yokoi's theorem (Theorem 2 of [2]). From it follows a characterization of tame ramification, which we shall state as Theorem 2.

Theorem 1. Let k be a finite algebraic number field and K / k be a cyclic extension of prime degree l. Let o and \mathfrak{D} be the rings of algebraic integers of k and K. Then we have the following basis x_{i}, y_{i}, $z_{m}(i=1, \cdots, t, j=t+1, \cdots, n, m=1, \cdots, n(l-1))$ of \mathfrak{O} over the rational integer ring \boldsymbol{Z}, i.e.:
$\mathfrak{O}=\boldsymbol{Z}\left[x_{1}, \cdots, x_{t}, y_{t+1}, y_{n}, z_{1}, \cdots, z_{n(l-1)}\right]$
such that $x_{1}, \cdots, x_{t}, S_{K / k} y_{t+1, \ldots}, S_{K / k} y_{n}$ consist a basis of o over \boldsymbol{Z} and $S_{K / k} z_{m}=0$ for $1 \leqq m \leqq n(l-1)$, where $S_{K / k}$ denotes the relative trace of K to k.*)

Let H be the Galois group of K / k. We denote the group ring $Z[H]$ of H over Z by Λ. Obiously \mathfrak{D} is a Λ-module. We consider it as a representation module of H (accordingly of Λ).

Theorem 2. Let K / k and \mathfrak{O} be as in Theorem 1. Then K / k is tamely ramified at every prime ideal of k if and only if no 1-module on which H acts trivially appears as a direct summand of \mathfrak{D} (considered as A-module).

At first we state the following well known facts which are useful in the proof of the theorems; let H be a cyclic group of prime order l (for example, the Galois group of K / k stated in the above) and $\Lambda=\boldsymbol{Z}$ [H] be its group ring over \boldsymbol{Z} (as before). Let h be a fixed generator of H and let $\theta=\cos 2 \pi / l+i \sin 2 \pi / l$, so that θ is a primitive l th root of 1 . Let $R=Z[\theta]$. As is shown in [1], there are three and only three classes of indecomposable Λ-modules, i.e. :
i) H-trivial modules, i.e., modules on which H acts trivially.
ii) Taking A to be $a R$-fractional ideal, we may turn A into a Λ-module by defining

$$
h a=\theta a \text { for } a \in A \text {. }
$$

iii) Let y be an indeterminate and A be $a R$-fractional ideal. We

[^0]
[^0]: *) We need not suppose that k and K are absolute Galois number fields, which is different from [2].

