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1. Recently, generalizing the notions of prime ideals and primary
ideals in rings, Murata, Kurata, and Marubayashi [1] have considered
the notions of f-prime ideals and f-primary ideals in rings, and obtain-
ed, along with other things, the uniqueness theorem of f-primary de-
compositions of ideals, under certain assumptions.

Continued from [1], in this paper, we shall investigate the ideals
which can be represented as the intersection of a finite number of f-
primary ideals.

Let R be an arbitrary ring. Throughout this paper, ideals will
always mean two-sided ideals in R and we shall assume the following
conditions as same as in [1]:

(B) For any ideal A and any ideal B not contained in r(4), we
have A: B+J.

(y) If Sis an f-system with kernel S*, and if, for any ideal A4,
SNA is not empty, then so is S*N A.

(0) For any f-primary ideal Q, we have Q: Q=RE.

2. Isolated components

Definition 1. Let A be an ideal and let S be an f-system. The
isolated component A g of A determined by S will be defined as follows:

Ag= {UseS(A 1 8) (if S is not empty)
A @Gf S is empty).

For any f-system S+, C(S) is an f-prime ideal containing 7((0)).
If seS, then s r((0)) and hence by the assumption (B8) we have
(0):s+<. This shows that A :s and whence Ay is not empty. So, it
can be proved similarly as in [1] that Ag is an ideal containing A.

Another characterization of f-primary ideals can be given by
means of isolated components.

Proposition 2. An ideal Q is f-primary if and only if, for any
f-system S, either Qs=@ or Qs=R holds.

Proof. Suppose that Q is f-primary. If S is empty, then the
assertion is trivial. Now we may suppose that there exists a non-
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