34. Modular Pairs in Atomistic Lattices with the Covering Property

By Shûichirô Maeda
Ehime University, Matsuyama

(Comm. by Kinjirô Kunugi, m. J. a., March 12, 1969)

1. Introduction. In the previous paper [4], a lattice L is called a DAC-lattice when both L and its dual are atomistic lattices with the covering property. The lattice \mathcal{L} of closed subspaces of a linear system, appeared in Mackey [2], is an example of a DAC-lattice. In [2; p. 168], Mackey proved that a pair of elements of \mathcal{L} is both modular and dual-modular if and only if it is stable modular. In this paper we shall show (Theorem 2) that this statement can be proved in general DAC-lattices. As a consequence of this result, we shall obtain a condition on a DAC-lattice which is equivalent to cross-symmetry. In the last section, we shall show some results on cross-symmetry of the lattice of closed subspaces of a locally convex space.
2. Symmetry of modular relations. Let a and b be elements of a lattice. We say that (a, b) is a modular pair (resp. a dual-modular pair) and write $(a, b) M$ (resp. $\left.(a, b) M^{*}\right)$ when

$$
(c \vee a) \wedge b=c \vee(a \wedge b) \quad \text { for every } \quad c \leqq b
$$

(resp. $\quad(c \wedge a) \vee b=c \wedge(a \vee b) \quad$ for every $c \geqq b)$.
(Note that $(a, b) M^{*}$ is equivalent to $(b, a) M^{*}$ in the sense of [4].)
A lattice L is called M-symmetric (resp. M^{*}-symmetric) when $(a, b) M$ implies $(b, a) M$ (resp. $(a, b) M^{*}$ implies $\left.(b, a) M^{*}\right)$ in $L . L$ is called cross-symmetric (resp. dual cross-symmetric) when (a, b) M implies $(b, a) M^{*}\left(\right.$ resp. $(a, b) M^{*}$ implies $\left.(b, a) M\right)$ in L.

Lemma 1. Let a, b and c be elements of a lattice L.
(i) If $(a, b) M$ and $(a \wedge b, c) M$ then $\left(a_{1}, b \wedge c\right) M$ for any element a_{1} of the interval $L[a \wedge c, a]$.
(ii) If $(a, b) M$ then $\left(a_{1}, b_{1}\right) M$ for any $a_{1} \in L[a \wedge b, a]$ and b_{1} $\in L[a \wedge b, b]$.

Proof. (i) Let $a \wedge c \leqq a_{1} \leqq a$. Then $a_{1} \wedge c=a \wedge c$. If $d \leqq b \wedge c$, then by $(a, b) M$ and $(a \wedge b, c) M$ we have

$$
\begin{aligned}
& \left(d \vee a_{1}\right) \wedge(b \wedge c) \leqq(d \vee a) \wedge b \wedge c=\{d \vee(a \wedge b)\} \wedge c \\
& \quad=d \vee(a \wedge b \wedge c)=d \vee\left(a_{1} \wedge b \wedge c\right) \leqq\left(d \vee a_{1}\right) \wedge(b \wedge c) .
\end{aligned}
$$

Hence $\left(a_{1}, b \wedge c\right) M$.
(ii) Assume $(a, b) M$ and let $a \wedge b \leqq b_{1} \leqq b$. Since $\left(a \wedge b, b_{1}\right) M$, it follows from (i) that

$$
\left(a_{1}, b_{1}\right) M \quad \text { for any } \quad a_{1} \in L\left[a \wedge b_{1}, a\right]=L[a \wedge b, a]
$$

