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1. Introduction. In the previous paper [4], a lattice L is called
a DAC-lattice when both L and its dual are atomistic lattices with the
covering property. The lattice _L of closed subspaces of a linear sys-
tem, appeared in Mackey [2], is an example of a DAC-lattice. In [2;
p. 168], Mackey proved that a pair of elements of .L" is both modular
and dual-modular if and only if it is stable modular. In this paper
we shall show (Theorem 2) that this statement can be proved in gen-
eral DAC-lattices. As a consequence of this result, we shall obtain a
condition on a DAC-lattice which is equivalent to cross-symmetry. In
the last section, we shall show some results on cross-symmetry of the
lattice of closed subspaces of a locally convex space.

2. Symmetry of modular relations. Let a and b be elements of
a lattice. We say that (a, b) is a modular pair (resp. a dual-modular
pair) and write (a, b)M (resp. (a, b)M*) when

(cV a) A b cV (aA b) for every c<__ b
(resp. (cAa)Vb-cA(aVb) for every c>_b).
(Note that (a, b)M* is equivalent to (b, a)M* in the sense of [4].)

A lattice L is called M-symmetric (resp. M*-symmetric) when
(a, b)M implies (b, a)M (resp. (a, b)M* implies (b, a)M*) in L. L is

called cross-symmetric (resp. dual cross-symmetric) when (a, b)M im-
plies (b, a)M* (resp. (a, b)M* implies (b, a)M) in L.

Lemma 1. Let a, b and c be elements of a lattice L.
( If (a, b)M and (aA b, c)M then (al, b A c)M for any element al

of the interval L[aA c, a].
(ii) If (a, b)M then (al, b)M for any aeL[aAb, a] and bl

e L[aA b, b].
Proof. (i) Let aAc<=al<=a. Then aAc--aAc. If d<=bAc,

then by (a, b)M and (aA b, c)M we have
(dV a,) A (b A c) __< (dV a) A b A c-- {dV (aA b)} A c

dV (aA b A c) dV (aA b A c) _<_ (dV a) A (b A c).
Hence (a, b A c)M.

(ii) Assume (a, b)M and let aA b_<_ b_<_ b. Since (aA b, b)M, it

follows from (i) that
(a, b)M or any a e L[aA b, a]- L[aA b, a].


