30. A Note on Radicals of Ideals in Nonassociative Rings

By Hidetoshi MARUBAYASHI^{*)} and Kentaro MURATA^{**)}

(Comm. by Kenjiro SHODA, M. J. A., March 12, 1969)

Let R be a nonassociative ring and let $\mathfrak{A} = \{u = \mathfrak{P}_n^{(\nu)}\}\$ be the set of all formal nonassociative products.¹⁾ In [3], Brown-McCoy has defined that an ideal²⁾ P is a u-prime ideal, if whenever $u(A_1, \dots, A_n)$ is contained in P for ideals A_i of R, then at least one of the ideals A_i is contained in P. We shall generalize this concept as follows: Let \mathfrak{U} be any fixed subset of \mathfrak{A} . An ideal P is said to be \mathfrak{U} -ideal if whenever $\Sigma_{\mathfrak{P}_n^{(\nu)}} \in \mathfrak{U} \mathfrak{P}_n^{(\nu)}(A_{\nu 1}, \dots, A_{\nu n})$ is contained in P, where Σ denotes the restricted sum and $A_{\nu i}$ are ideals, then $A_{\nu i}$ is contained in P for some ν , *i*. It is the aim of this paper to investigate \mathfrak{U} -ideals and to present some related results.

In section 1, 11-systems are defined by analogy with *m*-systems introduced in [4]. If A is an ideal of R, a 11-radical $\mathfrak{U}(A)$ of the ideal A is defined to be the set of all elements r of R with the property that every 11-system which contains an element of A. We shall prove that $\mathfrak{U}(A)$ is the intersection of all 11-ideals which contains A. Section 2 lays definitions of 11*-ideals and 11*-radicals of ideals which are analogous to those of u*-prime ideals and u*-radicals of ideals in [3]. We shall show that always $\mathfrak{U}(A) = \mathfrak{U}^*(A)$ under the assumption that 11 is a finite subset of \mathfrak{A} , where $\mathfrak{U}^*(A)$ is the 11*-radical of an ideal A. In the fininal section we define a 11-radical of the ring R, which is denoted by $\mathfrak{U}(R)$, as the one of the zero ideal of R, and show that $\mathfrak{U}(R)$ has the usual properties expected of a radical. Moreover we shall show that $\mathfrak{U}(R_n) = (\mathfrak{U}(R))_n$, where R_n and $(\mathfrak{U}(R))_n$ are the total matric rings of order n with coefficients in R and $\mathfrak{U}(R)$ respectively.

1. U-ideals and U-radicals.

Throughout this paper, we let \mathfrak{l} be any fixed subset of \mathfrak{A} . The principal ideal generated by an element a of R will be denoted by (a). The complement of an ideal in R will be denoted by C(A).

Lemma 1. Let P be an ideal of R. Then the following three conditions are equivalent:

⁽i) P is a \mathfrak{U} -ideal.

^{*)} Osaka University.

^{**)} Yamaguchi University.

¹⁾ Following Behrens [1, 2], we shall denote by $\mathfrak{P}_n^{(\nu)}(A_1, \dots, A_n)$ a fixed type ν of the product of ideals A_1, \dots, A_n in R.

²⁾ The word "ideal" will always mean a "two-sided ideal."