82. On Classes of Summing Operators. I

By V. CRAIU and V. ISTRĂŢESCU

Department of Mathematics, University of Bucharest and Institute of Mathematics, Rumanian Academy

(Comm. by Kinjirô KUNUGI, M. J. A., May 12, 1969)

1. Let X and Y be Banach spaces and L(X, Y) be the space of all bounded operators from X into Y with the norm

$$\|T\| = \sup_{\|x\| \le 1} \|Tx\|$$

Some important classes of operators in L(X, Y) were considered in connection with the classes of nuclear operators and Hilbert-Schmidt operators; a unified theory of these is the theory of *p*-absolutely summing operators of A. Pietsch [4].

It is the aim of the present note to give a generalization of the class of A. Pietsch. In the first step our generalization has its origin in the generalization of L_p -spaces given by Orlicz.

In a paper which will follow we give a new generalization inspired from theory of modulared spaces [3].

2. Complementary functions in the sense of Young.

For $t \ge 0$ let $y = \varphi(t)$ be a non-decreasing function such that $\varphi(0) = 0$, φ does not vanish identically and φ is left continuous for t > 0; let ψ be the left continuous inverse of φ . Define the function

$$\phi(t) = \int_0^t \varphi(s) ds \qquad \psi(s) = \int_0^s \psi(r) dr$$

for t, $s \ge 0$. The pair (ϕ, ψ) is called complementary Young functions; a basic result is

 $ts \leq \phi(t) + \psi(s)$

and equality holds if and only if $s = \varphi(t)$, $t = \psi(s)$.

3. ϕ -absolutely summing operators.

Let X, Y be Banach spaces and $T \in L(X, Y)$.

Definition 1. For $T \in L(X, Y)$ and (ϕ, ψ) be complementary Young functions we define the number $a_{\phi}(T)$ us

$$a_{\phi}(T) = \inf \left\{ c, \sum_{1}^{n} \phi(\|Tx_{i}\|) \right\} \leqslant \phi(c) \sup_{\|x^{*}\| \le 1} \left(\sum_{1}^{n} \phi(|x^{*}(x_{i})|) \right)$$
$$x_{i} \in X, i = 1, 2, \dots, n.$$

If $a_{\bullet}(T) < \infty$ we call T, ϕ -absolutely summing.

Remark. Since $\phi(t) = \frac{1}{p}t^p$, $\psi(s) = \frac{1}{q}s^q$ is a pair of complementary

functions, for this functions we obtain the class of A. Pietsch.