Notes on Generalized Commuting Properties 80. of Skew Product Transformations

By Ryotaro SATO

Department of Mathematics, Josai University, Saitama

(Comm. by Kinjirô KUNUGI, M. J. A., May 12, 1969)

1. Introduction. Let (M, Σ, m) be a measure space where M is a set of elements, Σ a σ -field of measurable subsets of M, and m a countably additive measure on Σ . An invertible measure-preserving transformation T of the measure space (M, Σ, m) is a one-to-one mapping of M onto itself such that if $B \in \Sigma$ then TB and $T^{-1}B \in \Sigma$ with $m(TB) = m(T^{-1}B) = m(B)$. Let (3) be the group of all invertible measurepreserving transformations of (M, Σ, m) with I denoting the identity transformation on M. Associated with $T \in \mathfrak{G}$ is a sequence $C_n(T)$, $n=0, 1, 2, \cdots$, of subfamilies of \otimes defined inductively as follows:

$$C_o(T) = \{ S \in \mathfrak{G} \mid S = I \text{ a.e.} \},\ C_n(T) = \{ S \in \mathfrak{G} \mid STS^{-1}T^{-1} \in C_{n-1}(T) \}.$$

It is clear that $C_n(T) \subset C_{n+1}(T)$ for each n. If there exists an integer N such that $C_N(T) = C_{N+1}(T)$ then $C_n(T) = C_N(T)$ for all $n \ge N$. R. L. Adler [1] called $C_n(T)$ the *n*th class of generalized *T*-commuting transformations and defined the generalized commuting order N(T) of T as follows:

 $N(T) = \begin{cases} \min \left\{ n \mid C_n(T) = C_{n+1}(T) \right\} \text{ if there exists an integer } N \text{ such} \\ \text{that } C_N(T) = C_{N+1}(T), \\ \infty \text{ if } C_n(T) \neq C_{n+1}(T) \text{ for each } n. \end{cases}$

Let H be the two-dimensional torus, i.e., $H = K \times K$, where K $= \{ \exp[2\pi it] \mid 0 < t \leq 1 \}, \text{ equipped with the normalized Haar measure } \lambda \}$ and let $T_{r,\mu}$ denote the invertible measure-preserving transformation on H which is defined by

$$T_{r,\mu}: (x, y) \rightarrow (x\gamma, y \cdot x^{\mu})$$

where γ is an element of K such that $\gamma^n \neq 1$ for every $n \neq 0$ and μ a non-zero integer. In [1], Adler asserted and proved the fact that $N(T_{\tau,\mu})=2$. However I could not follow his proof. In this paper we shall assert and prove that $N(T_{r,\mu})=3$. The method of the proof depends upon Adler's idea in [1].

2. Preliminaries. Let X be a half open unit interval (0,1]equipped with the usual topology. Since X is homeomorphic to the circle group K by the mapping ρ of X onto K which is defined by $\rho(x)$ $=\exp[2\pi ix]$, we may consider X as the circle group equipped with the normalized Haar measure. Let $H = X \times X$ be the topological product