79. Generalizations of M-spaces. II

By Takesi ISIWATA

(Comm. by Kinjirô KUNUGI, M. J. A., May 12, 1969)

In the previous paper [4] we obtained a characterization of M'-spaces as a generalization of M-spaces and Morita's paracompactification of M'-spaces. In this paper we shall give necessary and sufficient conditions for an M'-space to be M-space and show that the product space of M'-spaces need not be an M'-space and that the property of being M'-space is not necessarily invariant under a perfect mapping (see [2] or [4] for terminologies and notations).

1. Relation between M'. and M-spaces.

A space X is a *cb-space* (resp. *weak cb-space*) if given a decreasing sequence $\{F_n\}$ of closed sets (resp. regular-closed sets) of X with empty intersection, there exists a sequence $\{Z_n\}$ of zero sets with empty intersection such that $F_n \subset Z_n$ for each n where a subset F is regular-closed if cl (int F)=F.

Lemma 1.1. The following results has been obtained in ([5], [6]).

1) X is a cb-space if and only if X is both countably paracompact and week cb.

2) For a pseudocompact space X the followings are equivalent:
i) X is a cb-space, ii) X is countably compact and iii) X is countably paracompact.

3) A countably compact space is a cb-space.

4) A pseudocompact space is a weak cb-space.

The following lemma is obvious.

Lemma 1.2. If $\{U_n\}$ is a decreasing sequence of open sets of X such that $\cap \overline{U}_n = \emptyset$, then

1) there exists a locally finite discrete collection $\{V_n\}$ of open sets of X such that $\bar{V}_n \subset U_n$ and $\bar{V}_n \cap \bar{V}_m = \emptyset$ $(n \neq m)$,

2) there exists a non-negative continuous function f on X such that f=0 on $X-\cup V_n$, $0 \le f \le n$ on V_n and $f(x_n)=n$ for some point x_n of V_n , and

3) $\{Z_n; Z_n = \{x; f(x) \ge n\}\}$ is a decreasing sequence of zero sets of X with empty intersection.

Theorem 1.3. An M'-space is a weak cb-space.

Proof. Let φ be an SZ-mapping from an M'-space X onto a metric space Y and $\{\mathfrak{B}_i; i \in N\}$ be a normal sequence of open covering of Y such that $\{\mathrm{St}(y, \mathfrak{B}_i); i \in N\}$ is a basis of neighborhoods at each point y