78. Generalizations of M-spaces. I

By Takesi Isiwata

(Comm. by Kinjirô KUNUGI, M. J. A., May 12, 1969)

In this paper we shall give some generalizations for the notion of M-spaces introduced by K. Morita [8]. A space X is called an M-space if there exists a normal sequence $\{\mathfrak{U}_i\}$ of open coverings of X satisfying the following condition (M) below:

If $\{K_i\}$ is a decreasing sequence of non-empty closed sets of (M) X such that $K_i \subset \operatorname{St}(x_0, \mathfrak{U}_i)$ for each *i* and for a fixed point x_0 of X, then $\cap K_i \neq \phi$.

From condition (M) we obtain further a condition (M') (resp. (M_{δ})) with the phrase " K_i is a closed set" replaced by " K_i is a zero set" (resp. " K_i is a closed G_{δ} -set") and we shall call a space X an *M'*-space (resp. M_{δ} -space) if X satisfies the condition (M') (resp. (M_{δ})). The class of *M'*-spaces contains all pseudocompact spaces and all *M*-spaces. There are properties for *M'*-spaces similar to those for *M*-spaces, for instance, an *M'*-space X has Morita's paracompactification μX which is obtained by K. Morita for *M*-spaces. Moreover, as a nice property of *M'*-space, any subspace of μX , containing X, is always an *M'*-space while this property does not hold in case X is an *M*-space.

For simplicity, we assume that all spaces are completely regular T_1 -spaces and that mappings are continuous; we denote by βX and νX the Stone-Čech compactification and Hewitt realcompactification of a given space X respectively. For a mapping $\varphi: X \rightarrow Y$, the symbol Φ denotes the Stone extension of φ from βX onto βY . N is the set of all natural numbers. Other terminologies and notations will be used as in [3].

1. Characterization of M'-spaces.

Let φ be a mapping from X onto Y. φ is a WZ-mapping if $\operatorname{cl}_{\beta X} \varphi^{-1}(y) = \Phi^{-1}(y)$ for each $y \in Y$ [7] and φ is a Z (resp. Z_{δ})-mapping if $\varphi(F)$ is closed for each zero set (resp. closed G_{δ} -set) F of X. A Z (resp. Z_{δ})-mapping φ is a Z_{p} (resp. $Z_{\delta p}$)-mapping if $\varphi^{-1}(y)$ is pseudocompact for each $y \in Y$. A subset F of X is called a *relatively pseudocompact* if f is bounded on F for each $f \in C(X)$. A Z-mapping φ is said to be an SZ-mapping if $\varphi^{-1}(y)$ is relatively pseudocompact for each $y \in Y$.

K. Morita [8] has proved that X is an M-space if and only if there exists a quasi-perfect mapping φ from X onto some metric space Y where a closed mapping φ is called a *quasi-perfect* mapping if $\varphi^{-1}(y)$