77. On the Structure of Certain C*-Algebras

By Tadashi HURUYA

(Comm. by Kunihiko KODAIRA, M. J. A., May 12, 1969)

A C*-algebra A is said to be *elementary* if A is isomorphic to the C*-algebra LC(H) of the totality of compact operators on a Hilbert space H. The dual \hat{A} of any elementary C*-algebra A consists of a single element (cf. 4.1.5 in [1]), conversely any separable C*-algebra is elementary if its dual consists of a single element [5], where the dual \hat{A} is the set of all unitary equivalence classes of irreducible representations* of A. A C*-algebra A is called a CCR-algebra if $\pi(A) \subset LC(H_{\pi})$ and a GCR-algebra if $\pi(A) \cap LC(H_{\pi}) \neq (0)$ (cf. [6]), for all irreducible representations π of A, where H_{π} denotes the representation space of π .

In this paper, we present some results on the structure of *GCR*-algebras whose dual consists of a finite number of elements.

Lemma 1. If A is a separable C*-algebra and Card $\hat{A} \leq \aleph_0$, then A is of type I.

Proof. Let π be an irreducible representation of A. If $\pi(A) \cap LC(H_{\pi})=(0)$, then, by [2], there is a family of mutually inequivalent irreducible representations of A which has the cardinal number of continuum. This fact is contrary to our assumption. Therefore we have $\pi(A) \cap LC(H_{\pi}) \neq (0)$ and, by [4] and [6], A is a C*-algebra of type I.

Lemma 2. Let $(A_i)_{i \in I}$ be a family of non-zero C*-algebras and let A be the product C*-algebra of A_i 's. Then we have

$$(1) \qquad \qquad \hat{A} = \bigcup_{i \in I} \{ \rho_{\pi} | \pi \in \hat{A}_i \}$$

if and only if the index set I is a finite set, where ρ_{π} is a representation $(x_i)_{i \in I} \rightarrow \rho_{\pi}((x_i)_{i \in I}) = \pi(x_i)$ of A.

Proof. Suppose that (1) is satisfied. Let *B* be the restricted product C*-algebra of A_i 's (cf. 1.9.14 in [1]). Then *B* is a closed twosided ideal of *A*. Assume that $B \subseteq A$, then there is an irreducible representation ν such that $\nu(B)=(0)$. By the assumption, there is an irreducible representation π of A_i , such that $\nu = \rho_{\pi}$. Then we have $(0) = \nu(B) = \rho_{\pi}(B) = \pi(A_i) = \rho_{\pi}(A) = \nu(A)$. This is a contradiction. Therefore B = A. Since A_i is non zero, *I* is a finite set.

Conversely, let *I* be a finite set. Each A_i is a closed two-sided ideal of *A*. Let π be an irreducible representation of *A*. Since *I* is a finite set, there is an index $i \in I$ such that $\pi(A_i) \neq (0)$. Let $j \in I$ be any

^{*)} Throughout this paper, we mean by an irreducible representation a non-trivial one.