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In what follows, by H=(H, {, >) we denote a complex Hilbert
space, and by B=B(H, H), the space of all bounded linear operators
from H into H, associated with the strong operator topology. The
only topology that we consider on H is the strong one.

Our aim in this paper is to give a boundedness theorem for the
golutions of the differential equation
() r=AM)x+ f(t, ©),
where z: I—-H, I=[t, + ), t,>0, is a differentiable function on I
with continuous first derivative,? 4 : I—B is a continuous function on
I, and f: IX H—H is also continuous on I X H.

1. Theorem 1. Consider (x) under the following assumptions:
(i) there exists an operator valued function Q:I—B continuous and

such that:
(i) Q)+ QA + A*(HQ()=0,Y tel,
and
(i) [KQ®z, z>| >g([x|), (t, ) e IXH,

where g: R,—R,=I[0, + 00) is continuous and lim sup g(y)= + o ;
— 4 00
Gy x| -l1re, D) <p@®g(x|), withp: I-R, continuous and such that
[“pona®ia< +oo;

then, if x(t), t eI, is a solution of (x), it is bounded, i.e. there exists a
constant k>0 such that |x(t)| <k for every tel.
Proof. By differentiation of the function
(1) V() =<{Q®x®), x>,
we have ) )
V)= <Q(t)x(t) +Q@®)x(t), x>+ {QM®)x(t), 2(1))
={Q®)x(@) + QU ADx(t) + QW) f (¢, (), x(x))
(2) +<RQMx(@), ADx(®)+ f(E, (@)
={Q®) + QWA + A*(B)QE)x(D), x(1))
+<QM) f (¢, x(D)), (1)) +<Q®=(@), [, 2(t)))

and by integration from ¢, to t (f,<t), we have
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